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! This research has dealt with optimal control and adaptive "
4 l'
3 parameter identification and control of distributed systems, with ?ﬁ

primary application to large flexible space structures. The
research has developed both mathematical theory and numerical e
4 methods for design of control laws and compensators for complex ﬁ

distributed systems like large space platforms and antennas.

+ v ‘
k Approximation theory that serves as the basis for computer aided \?
1\ .‘
I design of control systems involving partial and functional
differential equations has been an especially improtant part of
o
5 this research project. Also, variable-order adaptive parameter ;’
~
it estimators and adaptive controllers have been developed for E
o~
distributed systems, and the parameter estimators (lattice
: filters) have been applied to both numerical simulations and ;?
/ hat
} experimental structures. )
4 o
: Approximation in Optimal Control of Distributed Systems
2 <
b In optimal control of distributed systems, we have studied i
K control problems for infinite dimensional systems with quadratic ;J
D i
: performance criteria. These problems require the solution of e
‘. -- 3
1 - \]
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2
infinite dimensional Riccati operator equations, which must be ,zé
solved numerically by large-order approximations. Approximation et
theory and numerical results for continuous-time optimal contrel :$£
are given in [1,2,16]. ';

W

We have collaborated with Professor I. Gary Rosen to develop A
approximation theory and numerical methods for discrete-time :i;
infinite dimensional optimal regulator problems and to g;%
demonstrate the practical implications of the theory and the ,,.;.._t
usefulness of the numerical methods on several examples, éﬁ‘
involving flexible structures, diffusion processes and time-delay jﬁ&
systems [3,4,5,6,15]. In these numerical examples, we have E;’
discovered important relationships between the length of the ﬁ;i
sampling interval (the time step) and the numerical condition of 1'4(
the approxomating finite-dimensional discrete-time control ;ﬁ;
problems. &;f
o

In connection with optimal control of flexible space

P e =

.:' v r¢. )

structures, we have investigated integrated control-structure

¢
design, by which we mean simultaneous optimal design of structure }“t
L 4
and controller. We have combined structural weight and e
robustness with respect to modelling errors in an overall ﬁ:f
e
objective functional for integrated control-structure 7 .Si
optimization. This results in a nonlinear programming problem of s
g >i
whose solution we have demonstrated in several numerical examples a S::
. . . ..un—_—_'.-.\
(7,8,16,17]. 'S
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Adaptive Parameter Identification and Control of Distributed
Systems

Another area of primary interest in this project has been
adaptive parameter identification and adaptive control of
distributed systems. We have studied the application of modern
least-square identification schemes to infinite dimensional
systems, and our most important results concern lattice filters
for estimating coefficients in infinite dimensional

autoregressive-moving average (ARMA) models [9,10,11,12,15].

Because lattice filters are recursive in order as well as in
time, they permit the order of the model to vary adaptively as
either more structural modes are excited or as higher frequency
modes are damped out while lower modes remain excited. We have
developed a vector-channel lattice filter ([10,15], which is an
extension of previous lattice filters and which is important for
applications with several measurements from the same structure.
With experimental data from a large and very flexible grid at the
NASA Langley Research Center, we have demonstrated the
effectiveness of lattice filters for adaptive identification and

prediction of flexible structures [11].

We have begun developing approximation theory that will
predict the performance of lattice filters with structures having
various types of damping [12]. We expect such theory to be
important in both adaptive identification and adaptive control of

large space structures.
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Also, we have incorporated our adaptive parameter estimators
into variable-order adaptive control algorithms for flexible
space structrues. Our main application so far has been to
robotic manipulators with flexible links {13,14,18,19]. We plan
to develop similar control algorithms for large flexible
platforms and antennas with structure similar to the flexible

grid on which [11] is based.
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"' H . . . 3 - . - . . '
;::: We consider the approximation of optimal discrete-time linear quadratic Gaussian (LQG) g
¢,
o compensators for distributed parameter control systems with boundary input and unbounded "
X
N . . . ]
N measurement. Our approach applies to problems that can be formulated in a state space on which :
:.. » - * . 3 .
‘:::' both the discrete-time input and output operators are continuous. Approximating compensators are !
; obtained via application of the LQG theory and associated approximation results for infinite
-\ .'5 h
;-::,’3 dimensional discrete-time control systems with bounded input and output. Numerical results for )
Wi g
o~ spline and modal approximation schemes used to compute optimal compensators for a one 4
P dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise '
i
W' . \
'2' measurement of temperature are presented and discussed. 4
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1. Introduction

In this paper we develop an approximation theory for the computation of optimal discrete-time
linear quadratic Gaussian (LQG) compensators (combined feedback control law and state estimator)
for distributed parameter systems with boundary input or control and unbounded output or
measurement. In a continuous time setting, boundary input typically results in an unbounded input
operator. That is, the system's input operator maps the control input into a space larger than the
state space in which the open-loop system is usually formulated. In the discrete-time case, on the
other hand, for a wide class of distributed systems, the resulting input operator is bounded on the
usual underlying state space. An unbounded output, or measurement, operator has domain smaller
than the usual open-loop state space.

For continuous time systems, Pritchard and Salamon (1987) have established an abstract
semigroup theoretic framework for treating the linear quadratic regulator problem (control only) for
infinite dimensional systems with unbounded input and output operators. Their approach is based
upon a weak or distributional formulation of the Riccati equations which characterize the optimal
feedback control laws in an appropriate dual space . Curtain (1984) provides a procedure for the
design of finite dimensional compensators for parabolic systems with unbounded control and
observation. In (Curtain and Salamon, 1986) a finite dimensional compensator design procedure
for a wider class of infinite dimensional systems with unbounded input (but bounded output)
including hereditary systems with control delays and partial differential systems with boundary
control is developed. Lasiecka and Triggiani have looked at linear regulator problems for parabolic
(1983a, 1987a) and hyperbolic (1983b, 1986) systems with boundary control and obtained,
among other things, global and local regularity results for the optimal controls and state
trajectories. In (Lasiecka and Triggiani, 1987b) Galerkin approximations and an associated
convergence theory for closed-loop solutions to regulator problems for parabolic systems with
Dirichlet boundary input are studied. A more complete survey of the boundary control literature

including references to some of the poineering work in this area can be found in (Pritchard and

Salamon, 1987).
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: : T In our treatment here, we consider the discrete-time problem (i.e. piecewise constant input and :4’
y sampled output). Our interest in the discrete-time or digital formulation is motivated by 1) the fact "
)
* that it represents a more accurate or realistic description of how the linear-quadratic theory for '
: distributed systems would actually be applied in practice, and by 2) how the boundedness of the 3
é‘ discrete-time input operator in the usual underlying state space facilitates the development of an ‘
' approximation theory which can simultaneously handle both unbounded input and unbounded
output. Our approach is based upon an application of the theory we developed earlier in (Gibson P
x‘ and Rosen, 1985 and 1986) for the approximation of optimal discrete-time LQG compensators for
, infinite dimensional systems with bounded input and output. Our results are applicable to >
0 boundary control systems in which a restriction of the state transition operator and the discrete-time .'::'
:.'i input operator are bounded on a space on which the output operator is bounded as well. To .:.;,
Y illustrate our approach, in this paper we describe in detail the application of our theory to a one "
-E dimensional heat equation with either Neumann or Dirichlet boundary control and pointwise :;:
: measurement of temperature. Elsewhere (see Gibson and Rosen, 1987) we have applied our ;
B results to develop approximation schemes for the computation of optimal LQG compensators for i '
i§ flexible structures (i.e. Euler-Bernoulli beams) with shear force input at the boundary and a E
” pointwise measurement of strain. “
An outline of the remainder of the paper is as follows. In Section 2 we describe an abstract X
i . framework for the study of boundary control systems and their discrete-time formulation. In :’:
. '
X Section 3 we review the LQG theory for infinite dimensional discrete-time systems and associated :
- abstract approximation results. In the fourth section, we discuss spline and modal subspace based B
: approximation schemes for the heat equation example. Section 5 contains some concluding 2
. remarks. \"\
o I
L,
2. The B ary Control Syst | its Discrete-Time F lati
We employ a semigroup theoretic formulation that has been used previously for a class of ,,. y
v A

abstract boundary control systems. See, for example, (Curtain and Salamon, 1986). Let W,V and

3
4

H be Hilbert spaces with W and V densely and continuously embedded in H. We

T

N
"
W 2 (X3
[J :-\
i &
’ -
. . - - - . - - . - ey - i |
ATy iy L S o e A ey N A L e A L R
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consider boundary control systems of the form
@.1) w(t) =Aw(), t>0

@2) w(0) = wq

(2.3) Tw(t) = v(v), t20

2.4) y(t) = Cw(t), t20

where A € L(W,H), the boundary input operator I is an elementin L(W,R™) and the output
operator Cis an elementin L(V,RP). Note that the operator A need not be the Laplacian. Our
choice of A to denote a general, most often differential, operator satisfying the conditions set forth
below is consistent with the notation used in earlier treatments of boundary control systems
elsewhere in the literature.

We assume that 1) I' is surjective and its null space, ,(I') = {@ e W: T¢ =0}, is densein

H, 2) the operator ¢, defined to be the restriction of the operator A to N (I), is a closed operator

s =R

on H and has non-empty resolvent set and 3) foreach T >0, all wy e W, and ve Cl(0,T; R™)

AA N

with T'w, = v(0), there exists a unique w € C([0,T]; W) N C([0,T}; H) which depends

) d

continuously on w, and v and which satisfies (2.1) - (2.3) for each t € [0,T]. It then follows (see

L.,
~2
)
»

o
N

Hille and Phillips, 1957) that the operator ¢ : Dom (&) c H — H given by Q¢ =A¢ for ¢ ¢

. X

Dom(Q) = N.(I) is the infinitesimal generator of a Ty semigroup, {J'(): t= 0}, of bounded
linear operators on H.

Define the space Z as the dual of Dom(Cl*) where the norm on Dom (Q*) is taken to be the
graph Hilbert space norm associated with the operator ¢ *. ThenHis densely and continuously
embedded in Z and {J7(1) : t2 0} can be uniquely extended to a Ty semigroup of bounded linear
operators on Z. Its generator is the extension of the operator ¢ to an the operator ¢ in T(H,Z)
given by ( & )(y) =<, a*y>y for e Hand e Dom(e™).

Since I" was assumed to be a surjection, it has a right inverse. Let 't : R™ — W be any right
inverse of I". Since Dom (") = R™, we have I'* € ZL(R™, W). For ve R™, we define
BeBRMZ) by Bv=(A-C)T+v. If I‘l+ and I"; are two distinct right inverses of [ then
R( F;’ - 1";) < N(). Since & coincides with A on M (I) , it follows that the operator B is

“"h}\‘.\ 'v’:.‘ ; \ ‘F“‘ ‘f‘*_‘ A W - ‘.‘ . -* \.:.L:‘. ‘9‘
L]
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™) -
k- 1
'1': . .
ke well defined. It can be shown (see Curtain and Salamon, 1986) that foreach wye H andv e
L )
fo:' L,(0,T; R™) there exists a unique w € C([0,T}; H) N H! (0,T; Z) which depends continuously on »
1:‘ U
wg and v and which satisfies

3

e w(t) = aw® + Bv@®, t>0 :
2 w(0) = w,
" in Z. The function w is given by y
N t )
A (2.5) w(t) =T (w, + J D (t-s) Bv(s)ds, t=20 _
g 0 )
& and is referred to as a weak solution to the boundary control system (2.1) - (2.3). J
L .
The discrete-time formulation of (2.1) - (2.4) is found by considering piecewise-constant ".
':, controls of the form A
< 2.6) v =uv,, telkt,&+D1), k=012, 4
:‘ &
L

- where 1 deiiotes the length of the sampling interval. Let w, = w(kt) , k= 0,1,2,... where w(-) .
. * is the unique weak solution to (2.1) - (2.3) given by (2.5) corresponding to w, € H and input v N
. ’
given by (2.6). (We note that with piecewise constant input of the form (2.6), the solution w is in )
B ! fact a strong solution on each subinterval [kt, (k+1)t].) Foreachk=0,1,2,.. define o
N ;
oy z, € C([kr, (k + 1)t]; H) by 7 (t) = w(D) - Ifu,, te [kt, (k+ 1)t]. Then by
s g
@ 2, () = (D) = QAw(t) + Bu,

M

N = Qz () + (A + BNy

N .
o = Az () +ATh,, tekr, k+ D1l

b3 z,(kt)= w, -ty . b

s 9
r: t*
’

,'f-{, Therefore N
z 4
> ¥
)

4 ‘ ;
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iy - Wi =2 ((k+1)7) + Ty

-

T(O(w, -THru) + I; T A r"'uk ds + I""uk t

]

T(Ow+ (- T @) Mue+ [ T©ards,

'y or .:'
3 ¢
" Wy, =Tw, +Bu, k=0,12,. :
d )
! wo€H
; where Te BZ(H)and Be Z(R™ H) are givenby T=9(t) andB=(I- (@) " + }
s U
;‘:‘.‘: | ; O (s)AI™ds respectively. {
) d
u We note that as in the case of the continuous-time input operator %, the discrete-time input
1, ‘
! operator B is well defined and does not depend upon a particular choice for I'*. Indeed if B, and N
: P p 1 )
¢ y
,l" B, are the input operators which correspond to the choices 1":' and T 2+ then for ue R™ we have ::
« :
& B,-Bu=(@-T@NT* -T,9u+ |° T©AT*-T,Hud .
Y (B;-Bu= I-T@X . 2 Ju + 0 ($)A ('™ = I, "uds. ,
’ ) 1
i "
, But (I‘l+ - I“:' yu € N @) = Dom(C) and therefore
l
\ J"«T(s)A(I‘; - I‘;)uds= I‘J’(s) C&(l";‘—l"; ) uds p
p 0 0 ¥y
: » T N
:. . d t
. =J'— T =Ttds= (T@) -DHAY -TH)u. j
D S ds 12 1 2 {
) In addition, if I'* is chosen so that ®,(I"*) € N.(A), B takes on the particularly simple form B =
: :
h (- (x))I'*. Itis worth noting that a simple calculation reveals that ;
y ": 3
N b
; B=[ () Bds A
|
Cn in agreement with the standard technique for obtaining the discrete or sampled time formulation of
P a continuous time system in either a finite dimensional or bounded input setting. Y
~ d
L
" 5 g
A i
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: 5 It is our intention here to apply the approximation theory we developed earlier in (Gibson and
.;l' U]
i:':: Rosen, 1986) for the design of optimal discrete-time LQG compensators for infinite dimensional .
|".‘
Tt systems with bounded input and output operators. We therefore require the additional assumptions
:;':';‘- that 4) T=9(t)e B(V)and 35) R(I*)c V. Although not all boundary control systems we
:::' might formulate would satisfy these conditions, there are many interesting and important systems
l'..
2 which do (see, for example, Section 4 below and Gibson and Rosen, 1987). In this case, the
:; control system (2.1) - (2.4) takes the form
B~ ' :
& :
) 2.7 W =Tw, +Bu, k=012,
B 2.8) woeV
(4
o 2.9) ¥, =Cw,, k =0,12,... . :
o ;
< I . . . .. {
. 3. LOG Theorv for Infinite Dimensional Discrete-Time Systems and Finite ]
e Dimensional Approximation )
" O . <
'Y )
&
n 3.1 The Infinite Dimensional Probelm :
¥
y [
,’}'. The discrete-time linear-quadratic regulator problem for the boundary control system (2.1) -
) .
N (2.3)is:
[}
s:'-' Find u* = {u* ) .0 € £,(0, 20, R™ which minimizes the quadratic performance index b
o, 3
’
| T .'
& Juw) = 2<ka,wk>v + ukRuk 3
k=0
;.':' where Q € L(V) is self-adjoint and nonnegative, R is a symmetric positive definite mxm matrix ‘
-
-;: and the state w = {wi}=  evolves according to the recurrence (2.7), (2.8).
2 e
Ca
- An optimal control exists for each initial condition w, if and only if the operator algebraic
h ’\)
s Riccati equation ‘
‘ L}
e 3.1 M= T"(I- [BR + B*MB)'B*IHT + Q. ;
(M)
2 :
u'.
0 6 N
:
X4 .

"

\
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;\"x : has a bounded nonnegative, self-adjoint solution I'l. In this case, the optimal control has the

\

}: feedback form uy = -Fw, where F=(R + B* HB)"B*HT. A control (sequence) u is admissible '
t* ¢
e for the initial condition wy, if the corresponding J(v) is finite. If there exists an admissible control .

) “

‘;:: for each initial condition, then (3.1) has a bounded nonnegative, self-adjoint solution. If each v

‘W admissible control for each initial condition drives the state to zero asymptotically, then there exists 4

at most one bounded nonnegative, self-adjoint solution to (3.1). The optimal trajectory w' =

5°g] - L
Y, {w® } _evolves according to w = Skw » k = 0,1,2,..., where the closed loop state transition K
i:: operator S € £L(V)is S =T - BF. If Qis coercive, then S has spectral radius less than one and is I
) &
" uniformly exponentially stable. From the finite dimensionality of the control space we obtain
:. - - .‘

(3.2) llk = - <f,Wk >v » k = 0,1,2,... .‘
~ f
§ m :"
0 " where f = (fl,fz,...,fm)T € X V iscalled the optimal functional feedback control gain. t
' =1 .
% The results stated here for the optimal linear-quadratic regulator problem are summarized from !
‘ (Gibson and Rosen, 1985). X
- f’ - 't

b When only a finite dimensional measurement y = {y, }, -, of the infinite dimensional state w N

) :
- is available (recall (2.9)), a state estimator or observer is required. For a given input sequence u \
: _ and corresponding output sequence y, the optimal LQG estimator is
{ : o
.Hi ~ A 2 A~ :
::: 3.3) Wi =Tw +By +F(y, -Cw}, k=0,12,. N
o (3.4) Wo €V
& where the optimal estimator or observer gain F € Z(RP,V) isF = TII C*(R +CII C"')‘1 with ,
IT € (V) the minimal, self-adjoint, nonnegative solution (if one exists) to the operator algebraic :C
. Riccati equation N
Y :
(3.5) NI=T(I -TMTC'(R+ CITCHICIT + Q. ¢
'L
v ) :
‘:,‘: Since F g (RP,V), it has the representation
’ i
% 7 ':
[ ‘.
W N
P RGN DN M AN N o N A N N S PN e e e L
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¢
’
Fy =f'y , yeRP i
‘ '.,:.
N
P n
where f =(f,f,,.., fp)T € x V iscalled the optimal functional observer gain. w
=1 o
-~ ~ (i )
The operator Q € B(V) is self-adjoint, nonnegative and the pxp matrix R is symmetric, .’3':
positive definite. 7
In a stochastic setting, the operator Q and the matrix R are, respectively, the covariance "
N
operator and covariance matrix for uncorrelated, zero-mean, stationary, Gaussian white noise o Y
l\-l )
processes that force the state and corrupt the measurement. In this case, if Q is trace class, (3.3), S
(3.4) is the infinite dimensional analog of the discrete-time Kalman-Bucy filter. In a strictly iy
~ ~ |'l.|
deterministic setting, Q and R are assumed to be determined via engineering design criteria :'::::
) '.‘
such as stability margins, robustness of the closed-loop system, etc. ":‘,0‘,
)
Replacing operators in the control problem with the adjoints of the appropriate operators in the N

estimator problem yields the usual duality between the LQG optimal control and estimator

problems. Hence sufficient conditions for existence and uniqueness of solutions of (3.5) and the

-

closed-loop estimator stability properties are analogous to the results for the control problem. In

particular, if e, = W} - w, thene, = §k eq k=0, 12,.., where § =T - FC, and a sufficient
condition for § to be uniformly exponentially stable is that Q be coercive.

The optimal LQG compensator consists of the state estimator in (3.3) and (3.4) and the control

law

O Nl Ry Pt il *.'-‘:'.”'s."-."'.f"

7

(3.6) 8, =-F#¥', k=012,

- - v,
f" _::5‘-" o

S

The resulting closed-loop system is given by

e

W, = KW, k=012,

X4
‘-}'-

1
1\

where W\ = (w,, Cv'k )T with (w} ‘k=0 the state trajectory that results from the input (3.6)

>~ 7

0
)
and 8 € B(VxVY) is :‘,v':.

4y
'::'.r
8 0, ‘I’

C ot

b
N,
-
"
"

Ty %9 v
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:
::‘_ T -BF "
.t‘ .
‘1
,‘: A= Y
L] A
FC T-BF-FC
o 4
V.
i ;
P It is easy to show that the spectrum of /& is given by 6(8) = 6(S) U o($), s that the stability of ',2"'
the closed-loop plant-compensator system is determined by the stability of the plant with full state .
;' feedback and the stability of the estimator error. :
X %
'
3.2. Approximation
. X
,::‘ Foreach N =1,2,...,, let V) be a finite dimensional subspace of V and let Py be a bounded )
I\ )
“': linear mapping from V onto V y (for example, the orthogonal projection with respect to either the V N
o -~
& or H inner product). Let Ty, Qy, Qu € Z(Vp), Bye ZR™Vy) and Cy € B(Vy,RP) and set 8
.‘
‘ »
o .::
' % . A€ g
.. and A
) - £ .. 0 a oy
- Fiy = Ty [INCR (R + CRIIy Co)! A
2 :
o
y - k¢
: where I and Iy are the minimal, self-adjoint, nonnegative solutions (assuming that they exist) to
o X
- the finite dimensional operator algebraic Riccati equations ::;
% ¢
(-, ]
> o
™ and .
:Q' A~ A A . 2 ~ .. A A Jl‘
;, (3.8) Iy =Ty( Iy - Tl CN (R + CyIly CN)' Cy Iy )T;‘+ Qu E:-
E respectively. The approximating optimal compensator is given by ¥
3 R
.:. N ~ .}
u* =-Fyw_  .k=0,1.2,.
R N X N Xx )
& .
‘ L
> o ‘
W
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* . . . . -
[QN)‘ };" o 18 determined according to the approximating observer

* —- - * A* + i; * w* , = 2.
LA Ty wN)‘+ By ule N{lek Cn WN)‘] k=0,1

& *
The measurements are given b = Cwy. , k=0,1,2,... where
re Yy e Y Ve ox Nk

W = TWN - Bul k=0,1,2,..

WNno = Wo-

k
The resulting closed-loop system is given by Wy, =4 N Wyho k=01.2,..

-
"'

W = Wy o w;”‘ )T and A€ T (VxVY) is given by

T -BFy

Ay =

2
(o
-
:! -
E 3

F\C Ty-ByFy- BC

Let Sy =Ty - ByFy and §N =Ty- I’ENCN and assume that Py — I strongly on V as
N — co. Assume further that TPy — T, 'I‘;PN I QuPy — Qand 6NPN - E)
strongly on V and that By — Band CyPy — Cinnormas N — . If the pairs (Ty, By)
and (T ; . C;) are uniformly exponentially stabilizable and the pairs (Ty, Q) and (T ; . QN) are
detectable (see Kwakernaak and Sivan, 1972) then there exist unique, self-adjoint, nonnegative
soludons [Ty and I‘:IN to the algebraic Riccati equations (3.1) and (3.5). If Iy and fIN are
bounded from above uniformly in N, then II\Py and fTNPN converge weakly to IT and fI,
respectively, as N 5o .

If, in addition, Sy and §N are uniformly exponentially stable, uniformly with respect to N,
then I1 Py and I’:INPN converge strongly. Weak convergence of IT\Py to I1 yields strong

convergence of F\ P, to Fand S, Py to S. If IT, P, converges strongly then FyPy —F in
NEN NEN NN NEN

A

B N R . - ” 20" - TS ] L% » oy vv'\\-"'
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K o norm. Weak convergence of IT\Py to I1 yields weak convergence of Fyyto Fand SyPyto

O W N N

::: S. When l':INPN — II strongly, then Fy— F innormand SyPy— S strongly in V as

N — 0. Finally,if ®y is the mapping of VXV onto V> /7y given by Py (w), wy) = (w,

o P\w,), then T Py — IT weakly or strongly is sufficient to conclude that 4Py — 4 weakly
or strongly depending only upon whether TIyPy — Il weakly or strongly as N — co. Under !

appropriate additional hypotheses on the spectral properties of the open-loop system and on the

; approximation scheme, it is possible to show that &8,® ) convergesto 4 in norm. (We have been k
b able to obtain such a result only for modal approximations.) Norm convergence of the closed-loop E
R state transition operators is sufficient to conclude that uniform exponential stability of 4 implies
o uniform exponential stability of 8 for all N sufficiently large (see Gibson and Rosen 1986).
:. In practice, the finite dimensional approximating subspaces Vy are often constructed using any
B of a number of common finite element bases, e.g. polynomial and hermite spline functions, mode ’
: 3 shapes, orthogonal polynomials, etc. For the discrete-time boundary control systems of interest
: to us here, the approximations to T and B, Ty and By, are obtained by approximating the ‘E
: continuous time semigroup, {J (t) : t 2 0}, by a semigroup of bounded linear operators on Vy,, "
-.{: {TN®:t20}. In factitis the infinitesimal generator & of the semigroup {T(1):t20j}thatis "
?-. approximated by a bounded linear operator Uy on V) with { " (t): t2 0} then being defined by :
2 TN =exp (Upt), t20. With Ty= T (t)and By =(I- S’N(t))PNI‘* + f ; ‘J’N(s)PNAI‘+ds, the ’
,, required convergence can usually be proved using the Trotter-Kato semigroup approximation : f
E result (see (Kato, 1966) and (Pazy, 1983) ). The approximations to Q, 62 and C, QN’ E)N and :
2 Cy, respectively, typically are taken to be Qu = PyQ, Qy =PyQ and Cyy = CPy,.
: Let {(p;\'};‘:‘l denote a basis for Vyy and set ON = (PN ,(p;‘ yeer (p;‘fN )TenN;ilVN. '
'; ' Adopting the convention that [L] denotes the matrix representation with respect to the basis
. [‘P’N’ ;‘-N‘ for a linear operator L with domain and/or range in V), we find that Z
% [(Fx) = R + [ByT ©N [By))'[ByIT ©N[Ty) and [Fy] = [Ty) ONCyIT(R + [Cy] 3
; ) NICyID! where ©Nand ON are the unique, symmetric, nonnegative solutions to the
- ny X ny matrix algebraic Riccati equations 2
" .
k 11 ]
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L Lo USe L RO e, Y, L L * e ) 4, 4, ‘I.'
:
: :
: (3.10 ON = [Ty|T (BN - ON[BLIR + [BN]T O NBD[BLIT ON)(Ty] '_V
> + MN[Qy] ;
": and
)
.
:" A ~ A ~ L7
W (3.11) Oy = [TJ( ON - N[CUIT(R + [CIONICIT) HCRIOMTHIT 5
" A S
! + [QulMN)T |
9 c
4 )
y The matrix MN is the ny % ny Gram matrix <®N, (@N)T>,, . -3
] o
g If wh = (@OT Wy with W* e RN, then u  =-[Fy) W}, k=012,.. wit N
% , 4 LS
A N
:Q A A . A. A~ A. A . y
; Nxet™ [(Tx] Wle + Byl ll}““"[FN]{}’N'k -Gl Wu,k}' k=0,1,2,. :
-~ .
“ (o
‘ w* Nyl < ®N o v
< leo=(M) <ON, wp>, . R
\- ) v
. _ :
The approximating optimal functional feedback control gain, fN = (f f}..., fhT £ x Vy -
=1 .
are given by fN= [FN]('MI“’)*(DN and the approximating optimal functional observer gain : '
j PN (N B BT & x Vy by f = [FgToN. 111 I ;
5 =(ff .. e >'<1 N by f = [Fy1'oY . IfIyPy — ITweakly (strongly) 4
. = N
o, -~ ~ -
< then f} — f;,i=1.2,., m weakly (strongly) in V. If ITyPy — IT weakly (strongly) then :
¥ f = f;,i=1.2,.,p weakly (strongly) in V. If the injection V c H is compact, then fN f ~
- ~ ~ ~ ,-
5 i=12,...,mand f}: - f;.i=12,.,p strongly in H if [IyPy and l'INPN converge only -
‘J Pl
P weakly. -
- 4. Examples and Numerical Results ;
~ »
. We consider the one-dimensional heat equation 4
», IS
'_\ 2 .
@ Pax=adVx,  0<x<l, >0,
» ot ax’
.
N .
l. Ll
. 12 R
~
> ]
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o o where a >0, with the homogeneous Dirichlet boundary condition ,
(4.2) w(t0)=0, t>0,
1,9 and cither the Neumann boundary control
¥ 4.3) M @1) = v, t>0,
ox
or the Dirichlet boundary control '
0 @4)  w1)=v(®), t>0,
/ where v € L,(0, ). For output we take a temperature measurement
P 4.5) yO=wtU_{), t20,
at some fixed point { € (0, 1). Initial conditions for these systems have the form
o5 4.6) w(0, x) = w, (x), 0<x<1
“ where wyeL, (0, 1).

Although the two control systems above appear to be similar, they are, in fact, quite different and

must be treated separately. We begin with the more straight forward of the two, Neumann boundary

X control. Let H=L,(0,1), V= HI‘-(O, D={eeH!0,1): ¢ (0)=0} and

:' ! W=H20,1)N Hl (0, 1). With H endowed with the usual L, inner product, V with the inner ‘
% .
o product < ¢, ¥ >y, _I D¢ Dy and W with the inner product <@, y >y = 22. I D DJ Y, we :
1%} -

~ = "

have the continuous and dense embeddings Wc VcHc V' < W'. DefineAe BZ(W,H),IF'e Z(W,

,:" R!) by A ¢ = a D%, T'¢ = Dg(1) and C¢ = ¢({) respectively. With these definitions the boundary

.;: 13
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"::: | . control system (4.1) - (4.3), (4.5), (4.6) has the form (2.1) - (2.4). The operator &: Dom (&) < :
:';n‘. H—H is givenby Q@ =a D2 forge {@ e HX0, 1): ¢(0)=D@(1)) = 0}. Itis densely defined,

“::"‘ negative definite, self-adjoint and it is the infintesimal generator of a uniformly exponentially stable

‘:s; analytic semigroup {9 (t): t =0} of bounded, self-adjoint linear operators on H. Also, {J(t): t> ‘:‘
:EEE 0} is a uniformly exponentially stable, analytic semigroup of bounded, self-adjoint operators on V )
e with generator ¢ given by o =Ce for o e {¢p e H? (0, 1): ¢(0) = De(1) = D2p(0) = 0}.

o Choosing It € ZR!, W) as (u)(x) = xu for x € [0, 1], we have R(TH <V, R(T) < N(@) .
., and that conditions 1) -5) given in Section 2 are satisfied. For the optimal control and estimator

problems, we take Q =ql, Q = qI, R =rand R = T where I is the identity on V,q, § 20andr,

> 0. The uniform exponential stability of the semigroup {J°(t): t= 0} on V implies that the algebrai \

! Riccati equations (3.1) and (3.5) admit unique bounded, nonnegative, self-adjoint solutions IT and fI :
4 4 respectively. The optimal control (3.2) takes the form
) 1
R (4.7) u = - j DfDw,, k= 0,1,2,. ~
) 2 ;
et ]
:' where the optimal functional feedback control gain f and the optimal functional observer gain 3
: f are elements in H} (0,1). !
": We construct an approximation scheme using a linear spline based Ritz-Galerkin approach. For
' eachN=12,.., [(ij}jN_ . denotes the usual linear spline or "hat" functions defined on the interval .
§' {0,1] with respect to the uniform mesh {0, 1/N, 2/N,...,1}. We discard the element centered :
,.E atx =0, cpg‘, set Vyy = span {(p’N};‘_ , and choose Py to be the orthogonal projection of V onto Vg :
. with respect to the V inner product. Hence Vyyisan N dimensional subspace of V. :
: For @ € Dom (Q1), IQ¢@l,; 2 algly 2 algl,; and therefore 0 € p(Q) and "1 H - Dom(a) ‘:
::- satisfies ICx‘lcplV < a"kplH forpe H. Wedefine Qy: Vyy — Vy as the inverse of the operator
.,-: Gl;‘l = PN(Zl'l restricted to V. The operator -(’.l;ql is positive definite because
;.'§ <C ! oy o>y = -allpyl2 for @ye Vy, and itis self-adjoint since < &~ ! @y, Wy =
‘ <PNC1" Pny YNV = <! Py NPV = alc P YN - Hence the operator Qy is well defined
~ and self-adjoint. For @y € Vyy and yy = Q\@y, the estimate
o 3
‘ 14 .
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< <UNP PNy =< \VN'Q;IWPPV =-a’l WNI}Z,I 2
'zé’ < -alQ'l\lesS -alPNQ! \yst, = -al Q;“ \yNyf, :
h =-a| ‘PN&' .
:
i'::" implies that QU is the infinitesimal generator of a Gy semigroup {T" (1) : t2 0} of bounded, E:
= self-adjoint linear operators on V) satisfying 137 ()l < edt ,t20.
" It can be shown thata<@ , y>, = <(-Q)12@, (-C)2y>; . It then follows that the matrix
-t representation for the operator (y with respect to the basis {<ij } in=Nl is[QAy]= (
2 -a< cpiN, (pfl>;{1 < (p?, <P]N>v . This agrees with the system matrix derived by a standard
;‘,':"’ Ritz-Galerkin finite element approach. Note that even though &y is defined to be the inverse of the "
':." operator Py(Q )‘1 restricted to the space V), computing its matrix representation does not require .
& either &2 or ¢! explicitly. In general, the same approach can be used to obtain an operator
: representation for the Ritz Galerkin approximation to any self-adjoint coercive operator.
Iy Let 9, denote the interpolation operator from V onto Vy defined by (9 @)(/N) = ¢(i/N), j =1, é
;w 2,..., N. Then for ¢ ¢ W, elementary approximation properties of linear interpolatory spline L
-j functions (see (Schultz, 1971)) imply
o, K
E‘ 1 2 :
: I(Py - Doly, <19y - Doly < — IDgl,
| : N=n :
_ :- and therefore, since W is dense in V, that Py — I strongly on V as N— e . Also, it follows that &
h' Cl; = PNCl'l—> Q1! strongly on V as N— o . If we define Ty = J (1), then the Trotter-Kato
i.: approximation theorem yields that TyPy — T strongly on V as N— oo and, since T =T=9()
5 and T3 =Ty = T (1) that T4Py — T" strongly on V as N— o, :
:-5 Since R(TH) c Vy (recall that (Tu)(x) = ux, 0 < x < 1), we define the approximating input
:' operators By by By = (I - ‘J‘N(t))l'"' and set Qy =4, EQN = a I'and Cy = C. The strong convergence A
, E of Py to the identity and TPy, to T together with the finite dimensionality of the domain of B and the f‘:
.: range of C are sufficient to conclude that QuPy — Q, aNPN - E) strongly on V and that By — B 3
] and C\Py— Cinnormas N — o '
\:' The uniform exponential stability of the semigroups { 0" (1) : t2 0} implies ::
. 15 '
e 3
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withr =¢e ** < 1. Consequently the pairs (Ty.By) and (Ty, C;) are uniformly exponentially

i stabilizable and the pairs (Ty,Qy) and (T, EQN) are detectable. It follows that there exist unique
:. ‘ self-adjoint, nonnegative solutions ITy and fTN to the finite dimensional algebraic Riccati
« equations (3.7) and (3.8) respectively. The uniform exponential bound (4.8) withr < 1 imples that
; : the zero control yields a uniform upper bound for Iy and f'IN and therefore the uniform
y E exponential stability of $y; = Ty - ByFy and §N =Ty~ IIENCN . We conclude that [T\ Py and
: I':INPN converge strongly in V to I and fIN , respectively ,and that FyPy and E’N converge to F
.: and ﬁin norm as N — . The approximating optimal functional feedback control and observer
; § gains, fyand FN’ converge respectively to f and E in the H! norm as N — oo,
3 In implementing the approximation scheme just outlined above, eigenvector decomposition of
! \ the associated Hamiltonian matrix was used to solve the matrix algebraic Riccati equations (3.10) and
:‘.: (3.11) (see Pappas, et. al., 1980). The required matrix exponentials also were computed using
." eigenvalue/eigenvector decomposition. All calculations were carried out via Fortran codes on an
% IBMPCAT. Weseta=v1,q=q=r=r=10, E=v2/2andt=.01 and obtained the
" functional gains plotted in Figs. 4.1 and 4.2. We plot f;and EN as well as Dfy; and D;N to exhibit
o

the H! convergence. We note that Df (or Dfy) appears as the feedback kemnel in the optimal control
P law (4.7).
;. n We also simulated the operation of the closed-loop system with an approximating compensator.

Using a 20 mode model for the infinite dimensional system and N = 12, we computed the closed-

':: loop spectrum of the approximating compensator (i.¢. the eigenvalues of the operator 4 given by
L i: (3.9) with N = 12). These eigenvalues along with the first 20 open-loop eigenvalues (i.e. the first
4 20 eigenvalues of the operator T = ¥ (1)) and the approximating closed-loop control and observer
: eigenvalues are tabulated in Table 4.1 below. Table 4.1 reveals that the last seven open-loop
eigenvalues remain essentially unchanged in the closed-loop system-i.e. these modes are neither

9 cuntrolled nor observed by the finite dimensional compensator. Also, as one would expect, 6(A4y)
3:' consists essentially of the union of o(Sy), 0’(§N) and the eigenvalues corresponding to the

Xk
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uncontrolled/unobserved modes of the open-loop system.

It is worth noting that the scheme we have outlined above for the Neumann boundary control
problem is the same scheme that one would ordinarily use if the problem were formulated in the space
H - i.e. if the output operator C was bounded on L,(0,1) (see Gibson and Rosen, 1986). This is

possible primarily because the space V = Hi‘(O,l) is the natural energy space for the underlying
homogeneous or open-loop system. Consequently, the inherent self-adjointness and coercivity in the
problem is preserved when it is formulated in the stronger space. In the case of Dirichlet boundary
control, the situation is quite different.

For the Dirichlet boundary control system (4.1), (4.2), (4.4) - (4.6), we choose the spaces H, V

and W and their corresponding inner products to be the same as they were in the Neumann case.

The operators A € Z(W,H) and C € Z(V,R1) also remain unchanged, however now we have

e BZ(W,RY givenby o= ¢(1). It then follows that the operator & : Dom(Q) < H — H is given
by Q¢ = aD?%p for ¢ £ H¥(0,1) N H; (0,1). Itis well known that ¢ is densely defined, negative
definite and self-adjoint and that it is the infinitesimal generator of the uniformly exponentially stable
analytic semigroup {J (t): t2 0} of bounded, self-adjoint linear operators on H. However this

time the operators ¥ (t) for t > O are neither self-adjoint nor a semigroup on V. Indeed, since

R(TM) H; (0,1) for all t > 0 and H; (0,1) is a closed proper subspace of Hrl. (0,1), T () isnot
strongly continuous in the V-norm at t = 0. (The fact that our general framework requires

[T*=1and R () <V precludes our choosing V to be Hl0 (0,1).) On the other hand,

{T(V):t= 0} an analytic semigroup implies (see Pazy, 1983) that there exists a constant pu> 0 fo
which 1QT (Diy < ut‘l fort > 0. Consequently, if we define T = T (1), then it follows ’that

T &€ &(V) and moreover, that

ITk(p|f, =- a'1<C1‘J’(kt)cp,‘J'(kt)cp> <aly Cl‘J’(kwt)cplH 1T ktely

cmn 6“1
H I(plf{ <K
akt akt
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B

_" fork = 1,2,... and ¢ € V. We have therefore

b

e

Y @9 1K, =Tk, s MK, K =0,1.2,..

)

N

;'. where M>0andr< 1.

ity

e We again choose I'" ¢ Z(R!,W) as (Ifu)(x) = xu for x € [0,1]. Then R (') < N(A) and we

y : have reformulated the boundary control system (4.1), (4.2), (4.4) - (4.6) in the general form of (2.1)
A

';. - (2.4) and conditons 1) - 5) are satisfied.
NI

We formulate the optimal control problem with the performance index

:E Jw) = 2 q<wk’wk>H+m12c

o =

o where q 2 0 and r > 0. That is, we take Q to be the bounded, self-adjoint nonnegative operator on

:\ HL(O,I) given by (Q@)(x) =q I ; | ly ¢(z)dzdy and R to be r. For the estimator problem we set

,?. Q=qlandR=r with §> 0 and 7 > 0.

\‘ The uniform exponential bound (4.9 ) implies the existence of unique, nonnegative, self-adjoint

‘J_ solutions IT and f] to the algebraic Riccati equations (3.1) and (3.5). The optimal control is again of

\ the form (4.7) with the optimal functional gains fand f in H] .

v The fact that {J°(t) : t= 0} is not a semigroup on V precludes the use of a semigroup - theoretic '
_-ij approach to approximation. We therefore employ modal subspaces and approximate the open-loop 4’
E_:_; state transition operator T directly as a bounded linear operator on V.

:'.'-1: Foreach N = 1,2,... let V) = span (] ];‘" , Where for x € [0,1], 9o(x) =x and @j(x) = sinjrx,

' &\ j=12,..,N. Let py denote the orthogonal projection of H = L,(0,1) onto span {(pj};‘al

4:523 and let Py denote the orthogonal projection of V onto V. Using the fact that V=H é O,1)® g, it :
¥ is not difficult to see that Py = (1)@, + pp(@ — @(1)@,) for ¢ € V and hence, via elementary

E’é properties of Fourier series (see Tolstov, 1962), that (P - Doly = (py - D@ = @(1)py)ly = 0
E'; as N — oo foreach o e V. y
2 We define Ty € T(Vy) by Ty = PyT. Then, since R.(T) = R(T (1)) < H") o1, ;‘
v f
.:;::: 18 i
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: N
:'.:‘ ' for Yy = Z 78 ¢,€ Vy we have
0

ot
N N j 2 2
2(-1) 0 j -aj 't
;:l TN WN= PNT‘VN = PNU'(")\VN = pNU‘(T)‘VN = U‘(T)pN\VN = zl { in Wyt WJN} e? (P) .
i ,, ”
X It follows that T; =P\T, n‘; ly = "T;)k'v <MrK, k=0,1,2,... withM >0 and r < 1 independent .
fl'q‘ .
o of N, and that
Ny
e
ﬁ-: I(TPy - Doly < I(PyTPy - PyDoly, +1(Py - DToly,
J \'
< Mrl(Py - Doly +1(Py - DToly, = 0
B
25N = o for ge V. Similarly, T*Py—> T strongly on Vas N > s :
» ~ '
The approximating input, output, and state penalization operators By, Cy, Qyand Qy take the
NN ,
! f,'-: form :
B 4
Q;f: " 2(-1) o
5 Byu =(-TlMu =gu+ >, 2™ gy,
X 0 _ . i
& ¢ 5= Jr
"E Cy =CQu =qPyQ and Qy= q . Reasoning as we did in the Neumann case, the approximating h
R d
2 algebraic Riccati equations (3.7) and (3.8) admit unique, nonnegative, self-adjoint solutions ITy and
i‘j. A A -~ -~ A
A Iy respectively, IT\Py — IT and ITyPy — IT strongly on V and FyPy — F and Fjy — F in norm
o ~ ¢
l E‘t as N — oo. The approximating functional feedback control and observer gains fyand fy converge )
-:;E- tofand f respectively, strongly in Hlas N — .
e ~ -~
Witha=10,q=q=r=10,1r = 5.0, E= V2/2 and 1= .01 and the scheme outlined above we
A .
j:. obtained the approximating optimal functional feedback control and observer gains plotted in Figs.
a
"‘-\:\:.: 4.3 and 4.4 below. The first 12 open-loop and the approximating closed-loop control and observer
»
- eigenvalues for N = 12 are tabulated in Table 4.2.
! 2: Table 4.2 reveals an interlacing of the closed-loop control and open-loop eigenvalues. That is, )
) (
"E: the closed-loop control eigenvalues (i.e. the elements in the spectrum of S) are alternately more and
.
less stable than the corresponding open-loop eigenvalues. We also have observed this phenomenon
# '- "y
‘ in other numerical studies we are carrying out involving LQG boundary control for flexible
Y
& . |
1, h'\‘ R
e

K \ - - - -
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-structures. In additon, in the Dirichlet boundary control system discussed above, if Q is chosen as
the identity operator on V = H{J(O,l), virtually all of the closed-loop control eigenvalues are less
stable than the corresponding open-loop eigenvalues. It is clear that this non-standard behavior

results from the presence of the one dimensional subspace represented by ®R,(I'"). Indeed, the

h B ad
)

behavior of the closed-loop spectrum in the case of Neumann boundary control is as would be

-

2,2

Pl

v g

expected. We feel that what we are seeing can most likely be explained via infinite dimensional

o

analogs of existing results relating the asymptotic properties of the closed-loop spectrum of a linear
regulator and the zeros of the corresponding open-loop transfer function (see Kwakernaak and Sivan,

1972 and Harvey and Stein, 1978). However, as of yet, we have been unable to establish this

conjecture satisfactorily and we consider it to be beyond the scope of this paper, which is primarily

concerned with approximation. We leave it as an interesting open question.

5. Concluding Remarks

We have developed a framework for the finite dimensional approximation of optimal discrete-time

TS

v
[y

e

AT

LQG compensators for distributed parameter systems with boundary input and unbounded

":1;?1‘15

measurement. Our theory applies to the class of boundary control problems which can be formulated

.

"‘;": i

in a state space in which both the discrete-time input and output operators are continuous. We have

e T % P
P
)

used a functional analytic treatment to develop a convergence theory and have demonstrated the

7

[ o Y

feasibility of our approach via examples involving either the Neumann or Dirichlet boundary control of

L

_i;q

a one dimensional heat equation with point measurement of temperature. We have shown that while

~ W N N

Py

both problems outwardly appear to be quite similar, they in fact require very different approaches to

o~
>

approximation. Also in the Dirichlet case the observed behavior of the resulting closed-loop spectrum

-
-

is, in some ways unexpected and its explanation remains open.

A

Finally, we have been looking at the application of our schemes to LQG problems for flexible

L O T

P

structures with boundary inputs and unbounded measurement and systems with control and/or

-

"l

observations delays. We have been considering vibration suppression for cantilevered beams via

I
s "r s

XA

shear or moment inputs at the free end and pointwise observation of strain or acceleration. These

va
Fd

l.' .

studies are currently underway with the results to be reported elsewhere.
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Open-Loop o(A12) o(S12) o(S12)
1 9975 9968 9968
2 9780 9780 9778
9769 9768
3 9402 9408 9387
9371 9371
4 .8861 .8872
.8778 8775 .8798
5 .8188 .8194
.7982 7985 .7998
6 7419 7414
.7026 7019 7030
7 .6590 .6573
.5960 5921 5946
8 .5740 5718
.4891 4769 4804
9 .4901 4875
.4433 4412
10 4104 4041
3675 3675 3682
11 3368 3341
2772 .2763 2768
12 2711 .2705
.2145 2129 2133
13 2139 2134
L1811 1811 1816
14 .1655 .1663
15 .1255 .1260
16 .0934 .0933
17 .0681 0677
18 .0482 .0483
19 0341 .0340
20 .0235 .0236

Neumann boundary control; simulation results

Table 4.1
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e Open-Loop a(S12) o(S12) :
y 1 90601806 90569591 78573771
2 67382545 .68243047 57981918
P 3 41136911 40961171 40082268
: 4 20615299 20758391 20936323
5 .08480497 .08447005 08636884 :
o 6 .02863695 02873534 .02892353 \
w 7 .00793790 .00791793 00792193
o 8 00180617 00180978 00178763 N
A 9 .00033753 .00033682 .00033414
] 10 .00005172 .00005179 00005162 3
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= ABSTRACT : At
& This paper treats discrete-time LQG optimal x(t) = Ax(t). t>0. (z2.1)
control of flexible structures with boundary Ix(t) = u(t), t 30, (2.2)
o control and what normally are unbounded measurement x(0) = x (2.3) N
}ﬁ operators. The application of recently developed o' . 4
W
Y approximation theory for infinite dimensional -
discrete-time LQG problems to the problem here {is vit) C x(t), to, (2.4) by,
h
Jh discussed, and a numerical example is presented. where A € L(W.X), T € L(W.R.), Ce L(V.RP) and "
1. INTRODUCTION X, € X with X, W and V Hilbert spaces. We assume
Recently, approximation theory has been deve- .
A t .
(2 loped for the linear-quadra.ic-Guassian (LQG) hat W and V are densely and continuously embedded ‘
,: control problem for infinite dimensional systems in X; that the operator I' is surjective and its null .
"2 with bounded input and output operators, and the . o
' application for optimal digital control of flexible space, N(I'), is dense in X; and that the operator X
f structures, diffusion processes and time-delay A:Dom(A) ¢ X -~ X, defined to be the restriction of :
A systems has been demonstrated in numerical examples 5 . N
7 (see {3.4.5)). In the corresponding continuous- 4 to N(r)' generates an CO semigroup (T(t): t 3 0}
. time control problem., the requirement that the of bounded linear operators on X.
o input operator be a bounded operator from the |
N finite dimensional control space into the infinite
(N
u dimensional state space almost always eliminates We treat the unbound input by rewriting the !
=~ boundary control of distributed systems. However, boundary control system (2.1)-{2.3) as an equiva- N
-
¥ in discrete-time control with piecewise constant .
?\ inputs, the input operator representing a boundary lent evolution system in a space Z, larger than X, .
control usually is bounded. This makes the theory and then considering weak, or mild, solutions (see
'~ developed {n [3] and [4] applicable to boundary
A control of distributed models of flexible struc- (2] for this approach). To construct Z, we begin :‘
.s tures. An important feature of the approach in with the space Dom(A') endowed with the graph Ky
o 3
> this paper is that we accommodate both boundary Hilbert space norm associated with A®. We then .
My control and a normsally unbounded measurement opera- <
:\ tor by working the problem in a Hilbert space (the define the dual of Dom(A*) to be Z. It can be "
- space V in the following sections) with stronger b
topology than the natural energy space (the space X shown that X is densely and continuously embedded .
{ in the following sections). This trick appears to in Z and that (T(t): t € 0) admits a unique exten- ‘N
., simplify many, though not all, problems whose ~ ;'
'?- continuous-time analogs are much more diffficult. sion to a c0 semigroup on Z. The generator of this -
? extended semigroup is an extension A of A, with o
{ In this paper we sketch the theory for trans- e - * -
{~ foraming an abstract boundary controi system with AX el Z glven by (Ad)Y <¢.A w>x for ¢ € X and N
Y unbounded measurement operator into a discrete-time ¥ e Do-(A').
b control systes with bounded input and output opera- v
tors. Also, we summarize the discrete-time LQG .
\’ approximation theory in [3) and (4], and we give wf recal: that T was assumed to be onto and N
>~ numerical results for control of a flexible beanm. let T € L(R",W) denote any right inverse of . -
*d n .
’ 2. THE ABSTRACT BOUNDARY CONTROL PROBLEM Then for u € R”, we define Y
[} - -
AND THE DISCRETE-TIME FORMULATION Bu = AT'u - Ar'u. (2.5)
3 We conslider boundary control problems for
: : flexible structures whose equations of motion, in It is not difficult to show that B is a well defined .
o
L; first-order form, can be written abstractly as element of L(R,Z), which does not depend on the .
: partiuclar choice of r'. Forue Lz(o,tr; R.) and s
"
) “This research was supported by AFOSR Grant 840309 x0 € X, it can be shown that the function
- and APOSR Grant 840393. -
- o
( A
-
e et St et AT AT AT s m e e At BT U ~ W . . e BT %
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x(t) = T(t) x4 * j T(t-s)Bu(s)ds (2.6)

0

1s in C([0.t ):X) N Hz(O.tf;Z), that x(0) = x and

x(t) = A x{t) +Bu(t) (2.7)

in Z for almost every t € [O.tf]. The x-valued
function x given by (2.6) is called a weak solution
to the initial value problem with boundary input,

(2.1)~(2.3).

We derive the discrete-time formulation of
(2.1)-(2.3) by letting T denote the length of the

sampling interval and considering piecewise
constant control inputs of the form u(t) = u(krv),
kr € t < (k+1)Tr, k =0, 1, 2, From (2.6)
then, we obtain
x{{k+1)T) = T x(kr; + B u(kT) (2.8)
where
T = T(kt) € L(X),
(2.9)
+ T +
B = (I-T(tr -« J T(t)Ar dt e L(R™.X).
0
Note that if I'" can be chosen so that R(I'") ¢ N(A},

then the discrete-time input operator B takes the
simple form B = (I - T)r+.

To simplify notation, we will assume henceforth

that the time scale has been normalized to make

T = 1. The discrete-time control system is then
x(k+1) = T x(k} + B u(k}, (2.10)
k=0,1, 2
y{k) = C x(k). {2.11)

If the injtial state x(0) = x. € X as we originally

0

assumed, then each x(k) in (2.10) will be in X, so
that the discrete-time control system does not

involve the space Z.

From here on, we will assume that x(0) is in
the stronger space V. The reason i{s that we will
apply the approximation theory developed in [3] and
{4] for optimal discrete-time LQG compensator
synthesis for systems with bounded input and
bounded output operators to boundary control
systems with meusurement operators that are
unbounded on the space X. While the discrete-time
input operator B is an element in L(R.X), in

general the output onerator C {s not bounded from X

B

AR A A% 4 A ARACAARARCARS i Sy b SR AP o pa el ..

to R
discrete-time control system (2.10)-(2.11) in the

Consequently, we must consider the

space V, where both the input and output operators
are bounded. In addition to x(0) € V, therefore,
we require that T =« T(t) € L(V) and R(I') ¢ VvV, and
we observe that these conditions imply B € L(R,V)
and x(k) eV, k=0, 1, 2, While not all

boundary control problems for flexible structures
satisfy these hypotheses, a large class of impor-
tant problems do. This should be evident from the

example in Section 4.

3. THE OPTIMIAL DISCRETE-TIME LQG
COMPENSATOR AND APPROXIMATION

We present here a brief summary of the linear-
quadratic theory and associated approximation
results developed in [3]), [4) and [5] for infinite
dimensional discrete-time control systems having
the form (2.10)-(2.11), with T ¢ L(V), B € L(R", V)
C € L(v, RP)and x(0) € V. The optimal compensator
is an optimal feed back control law together with
We treat

an optimal state estimator, or observer.

the control problem first.

The linear-quadratic optimal control problem is
to find a control sequence u(¢) to minimize the

performance index

o
Y <ax, xix) > )T R ui
k=0

J{u) = (3.1)

where x(0) € vV, x(k}, k =1, 2, ... , is given by
(2.10), Q € L(V) is nonnegative and self adjoint,
and R is an m x m positive definite symmetric
matrix. For this problem the infinite dimensional
theory closely parallels the finite dimensional
case. A solution to the optimal control problem
exists for each x(0) € V if and only {f there
ékists a nonnegative, self adjoint operator N ¢ L(V)
that satisfied the algebraic Riccati equation

m=T'(m - mB(R « B*m8] YB*mT - Q. (3.2)

If for any control sequence that makes J(u) finite
the state x(k) approaches 0 asymptotically, then
there exists at most one nonnegative self adjoint
solution to (3.2). When such a solution to (3.2)

exists, the optimal control has the feedback form

u(k) = -F x(k), k=0,1, 2, (3.3)

where F ¢ L(V,R') is given by
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F = (R + B IIB] "B IT, (3.4) Since P ¢ L(R', V), we can write
the optimal trajectory satisfies Fy = fT v, y € RP, (3.20)
ak) = sX x(0),  k=0.1,2, ..., (3.5 o .o P
where f = (f1 f2 f.) € X V is known as the

with § = (T-BF) ¢ L(V) and J. = <II x(0), x(0)>v.

in
A sufficient condition for the closed-loop system

to be uniformly exponentially stable (i.e., for the
spectral radius of S to be less than one) is that Q

be coercive (i.e., Q 3 a > 0).

Since F € L(V, R'), there exists

m
f=(f f f ) e Xv
1 2 ] §=1
such that the optimal control law in (3.3) can be
written
u(k) = -<f, x(k) >y k=0,1,2, ..., (3.6)
or [u(k)]J = -<fj, x(k)>v, }=1,2, ... m. The

vector f is called the optimal functional feedback

control gain.

The optimal LQG statz estimator, or observer,

is

x(k+1) = T x(k) + B u(k) + F [y(k) - C x(k)],

k=01, 2. (3.7)

Here, X(0) € V and the estimator gain Fe L(RP, V)
is

F = TAC*(R + cnc®)”} (3.8)
with fl in L(V) the minimal nonnegative self adjoint
solution (if one exists) to the algebraic Riccati
equation

=T - fic* (R + ciic®) lemyT® + Q

where Q € L(V) is nonnegative and self adjoint and
and R is a p x p positive definite symmetric matrix.
It Q 1s trace-class, then (3.7) is an optimal
Kalman-Bucy filter for (2.10)-(2.11) if a zero-mean,
stationary white noise process with covariance
operator Q is added to the right side of (2.10} and
a similar noise process with covariance matrix R is
added to the right side of (2.11) (see [1]. In
compensator design, 6 and R often are chosen to
produce certain deterministic properties in the
closed-loop system, such as stability margins and
robustness; then, § need not be trace-class. Con-
ditions for existence and uniqueness of solutions
to (3.9) are analogous to those for the control
Ricatti equation (3.2).
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optimal functional estimator, or observer, gain.

The optimal compensator consists of the state

estimator in (3.7) and the control law

u(k) = -F k(k). k=0,1,2, ..., (3.11)

with the control gain F given by (3.4) with the

solution te (3.2) and the estimator gain given by
(3.8)
closed-loop system then consists of (2.10)-(2.11),
(3.7) and (3.11).

with the solution to (3.9). The optimal
It can be shown that the
spectrum of this closed-loop system {s o(T - BF)
o(T - FC).

Our approximation of the Infinite dimensional
LQG problem and compensator is based on approxima-
tion of the operators T, B, C, Q and Q by operators
on finite dimensional subspaces VN of V. We denote
by PN the orthogonal projection of V onto VN. and

we assume that P, converges strongly to the iden-

N
tity of operator on V. Also, we assume that there
exist operators TN' QN' QN € L(VN) and.QN and QN
N € L(R", VN) and

P =
R ) such that TNPN' TNPN' QNPN and QNPN

nonnegative and self adjoint, B

CN € L(VN,

converge strongly to T, T, Q and Q. respectively,

and BN

respectively ag N - .

and CNPN converge in norm to B and C,

For each N, we define a finite dimensional LQG
problem for the open-loop system with the operators
TN' BN and CN and for the operators QN' R {n the
optimal control problem and the operators QN and R

in the estimator problem.

The solution to this Nth LQG problem requires
the solution of the two algebraic Riccati equations
obtained by replacing the operators in (3.2) and

(3.9) with their Nth approximatjions:

n -1* _ . B .

N TN(nN nNBN[R*B HNBN] B ﬂN)TN QN (3.12)
& Ao LI L -1 * 5

nN = TN(HN nNCN[R CNHNCN] CN"N)TN QN (3.13)

The optimal control and estimator gains for the N{h

problem are given by

L] -1 _e
PN = [R BN“NBN] BN"NTN (3.14)
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Py = Tylly(Ry+ C\MeCy] (3.15)

If the pairs (TN. BN) and (T;, C;) are stabili-
zable, (3.12) and (3.13) have nonnegative, self
adjoint solutions; if the pairs (QN. TN) and

(6N' T;) are detectable, the nonnegative, self
adjoint solutions to (3.12) and (3.13) are unique
and positive definite.

As in the infinite dimensional problem, we have

functional control gains fN = (f: fg - fN)T € X VN
and functional estimator gains £ = (ET fg A f:)T

€ X VN corresponding to FN

We will give the formulas for computing the func-

and EN' respectively.

tional control and estimator gains for the single
input/single output case {(m = p = 1); the general
case is a straightforward extension. When m = 1,
B and B, are elements of V and V , respectively,

N N

and when p = 1, ¢* and C; are elements of V and VN’

respectively. The following two formulas then
follow from (3.14) and (3.15):

N N l -1 .«

£ = £, = (R+ BBy ~ TMB.. (3.16)
<N =N = & -1 - s

o=t = (R + GILCL) ™ T MCp. {3.17)

For the example in Section 4, it can be shown
that the closed-loop operators for the approxi-
mating LQG problems are exponentially stable,
uniformly in N; i.e., there exists constants M > @
and r < 1, independent of N, such that

[ty - BBl + 1(1] - FyC¥l € ur, (3.18)

Yk 3 0

This condition and our assumptions about the strong
convergence of the basic operators TN’ T;, QN’ GN,
BN and CN guarantee {(see [3), [4])) that the func-
tional control gains fN and fN converge in V to f
and f, respectively. See [3), [4]. [5] for more
details on convergence analysis and numerical
aspects of the compensator approximation discussed
here, including results on convergence of the

approximating cospensators and closed-loop systems.

4. EXAMPLE
Consider the equation of motion for a clamped-
free Euler-Bernoulli beam with Kelvin-Voight
viscoelastic damping

#(t.8) » c. DY w(t.s) + EI D* w(t.s) = 0, (4.1)

0
0<s <1, tr 0

U .‘ [3 ui 3, - -

w(t,0) = Dw(t,0) = O, t 0, (4.2)
2 - 2

g D" w(t,1) +EI D" w(t,1) = O, t 30, (4.3)

% D3 w(t,1) + EI D° w(t.1) = ~u(t), t 3 0, (4.4)
The constants in (4.1)-(4.4) are

€y = .0001, El = .01333.

As indicated by (4.4), the control force u(t) is
applied to the right end of the beam. For the

setup in Section 2, the appropriate spaces are:

X = (¢ € H2(0,1): #(0) = D&(0) = 0} x L,(0.1) (4.5)
v o= s : - - p?
= (¢ e H3(0.1): ¢(0) = DG(0) = D%$(1) = 0}
(4.6)
x(1l(0,1): ¢(0)) = 0,
W= (6.0) € X: oW + EI € ut0,1),
(4.7)
®(0) = Do(0) = 0, conzw(1) + EID?$(1) = 0)
The state vector x(t) is
w(t)
x(t) = | (4.8)
wit)

and the operators A. T and r’ are

A=’ 0 . ‘4] (4.9)
—-EI D -C_.D

0

1 3 3
r: oW~ RL T@w) = -cp1) - Em’e(1). (4.10)
+ 1

r' R -, o= $qu. (4.11)

where ¢0 is the third-degree polynomial that satis-
fies

9,(0) = DB(0) = D%¢(1) = 0, Do#(1) = -1/El. (4.12)

Hence
rr': RY <R Tt (4.13)
Now let
Dom(A) = N(I). A =4 (4.14)

N(T)

and let (T(t): t » 0) be the semigroup generated
on X by A. Then, as in (2.9),

T = T(T) B~ (I - T(T))Oo. (4.15)

Note that R(I')} c N(A).
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- For numerical solution of the LQG problem, we \'
used two schemes to approximate the beam. The ‘\\?
first method is a Galerkin scheme that uses cubic ?:
B-splines as basis vectors for the approximation A
subspaces VN in the general approximation framework 2
discussed in Section 3. The second approach is a :"n
v
nodal approximation, which uses the natural mode &"-
LYY,
shapes of undamped free vibrations of the beam as 5* ,
basis vectors in approximating the infinite dimen- ':(
sional control problem. We have not carried out
all of the details of the convergence proofs, but Aﬁ‘
it appears that methods similar to those in [5] wos o ‘4:2 T J‘ T ;6 T o; A . %f'
will yield the required proofs. 533
Figure 1. B-spline Approximations to f; '?Q‘
N =2, 3, 4, 5, 6 Elements R
For the optimal linear-quadratic regulator i‘
problem we take T = .01, R = .01 and Q such that }\,
2 :"::
<«Qx(t), x(t)> = |x(t)|x°. (4.15) 3
v v
hQL
The functional control gain f in (3.6) has the form :ﬁ\
X
]
f=(f., £} eV. (4.16) P
1 2 -
vy
In the spline-based scheme, the function ¢0 is }F
v
an element of each VN' so that essentially we need -0 1 %d?:
W,
only approximate the semigroup T(t) using the g{ \
Galerkin method. For each N, we solve the finite 7 [ 4
A
dimensional Riccati equation (3.12) by standard | S
~lo ~—Y ——T T ml IS
numerical methods and compute the Nth approximation 0.00 020 0.40 0.60 0;37 1 00 .f\
to f according to (3.16). Figures 1-3 show our “ N
" Flgure 2. B-spline Approximations to f; ey
approximations to f,, f1 and f, for N = 2, 4, 6, 8 N =2, 3, 4, 5, 6 Elements .
elements. [ ]
20 :‘-_
D
Some of the splines used in this scheme are in t!:.
v,
X but not in V, so we are not guaranteed V- t{;
convergence for the approximating functional gains. ::}
Pigures 1-3 demonstrate that the approximations to i =
f converge in X. It seems unlikely that these F{g
approximations converge in V; V-convergence would f::
N~ e
require that fl (1) converge to zero, but it does -};:
e
not. SN
[ J
In the second approximation scheme, the natural r:a;
L8
mode shapes, which are used as basis vectors for ,\,1
"
the apaces VN in Section 3, are elements of V, so :ﬂ$1
e
we should get the functions fN converging in V. Figure 3. B-spline Approximations to fa C“$’
It {s straightforward to compute the operators TN' N=2 3.4,5, 6Elements i-"

B" and Q, for the finite dimensional Riccati
equations. Figures 4 and 5 show the approximating
functional control gains for N ~ 10, 14, 18, 20
sodes, and the pointwise convergence of flﬂn is

consistent with V-convergence of the approximations

to the functional control gain f.

v

v
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e Figure 4. Modal Approximations to f;
N = 10, 14, 18, 20 Modes
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Figure 5. Modal Approximations to fp
N = 10, 14, 18, 20 Modes

.

For state estimation, we take the measurement

y(t) = w(t,.5); (4.17)

Mt e e u e

ji.e., we place a straln guage at the midpoint of

2 the beam. We need the state vector to be in the
'Q space V in (4.6) so that a pointwise measurement of
: the second derivative of the displacement will be a
: continuous measurement of the state. In the esti-
mation problem, we take R = 1 and Q = 1
We use only the modal approximation to solve
o for the estimator gains. For each N (number of
; modes), we solve the finite dimensional estimator
Y

Riccati equation (3.9) and then compute the approx-

imating functional estimator gains f? = (fN.fg)

N~

according to (3.17). Flgures 4-6 show Pl and

t:. As expected, these functions converge uni-
! formly pointwise. This is consistent with V-

convergence of fN
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Figure 6. Modal Approximations to I
N = 14, 18, 20, 22, 24 Modes
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N This paper presents a new denvation of a least-squares lattice filter and applies the \
: filter to identification of flexible structures. The vector-channel lattice here -- denved in 4
) » '!
g N
’: an infinite dimensional history space, without matrix manipulations or geometnc -y
» :
.J:Q arguments -- can constrain the AR cocfficients for several outputs to be the same. w3
-;.; Numerical results for a simulated flexible structure compare the vector-channel lattice ﬁ
*‘v ) . .
): with the standard lattice filter. These results show that the frequencics and damping :
o -~
o ratios for the most significant modes can be identified adaptively with lattice filters. (_".'.
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n 1. INTRODUCTION
¥
o
1:::|
0‘: In recent years, adaptive lattice filters have been used increasingly in signal processing to implement
W)
) . L . )
A least-squares algonthms and other estimation methods. One advantage of a least-squares lattice filter is
a that it is recursive in both time and order, while the classical least-squares algonthm is recursive in time
N
N only. Also, lattice filters have been shown to possess desirable numerical stability [1]. Lee. Morf and
B
L . . . . . . I
. Friedlander [2,3] developed the time update equations nceded for adaptive lattice filters and studied
Sl
applications to speech processing and adaptive control. For derivations and discussions of lattice filters,
)‘ s
fh see [4,5,6,7]. :
L (]
P U
X . . . . . e (
' v:. Potentially important new applications of lattice filters appear to lic in adaptive identification and )
b~ control of large flexible structures. Because such sturctures have many, usually infinitely many modes of
P :
) ; vibration, the problem of determining the order of a model to use for on-line identification and control is "
v, t
-\,:"_- a major obstacle. A lattice filter, with its order-recursive property, can in principle identify the cffective
Cht . . : .
order of the structure and adaptively increase this order 10 accomodate new excitations to the structure or
o . . . . :
j:' decrease the order as faster transients in the structure are damped out. Sundararajan and Montgomery .
j::: [8,91 and Wiberg [10,11] were first to apply lattice filters to identification of flexible structures. . 3
-~
g
.~ . . : . :
Y Sundararajan and Montgomery used the lattice to estimate the number of excited modes of a flexible :
A
&N structure, while using fast Fourner transforms to identify the frequencies and damping ratios. Wiberg has
‘G
j\ studied identification of structural frequencies and damping with lattice filters. For structural identification )
~ !
= . . . I . .
>, from free-response data, Wiberg has developed a “vibration lattice”, which enforces the constraint that 2
A
4 cach scalar measurement channel for the same structure have the same auto regressive (AR) cocfficients.
).'-.‘
A
,
- To understand the motivation for Wiberg's vibration lattice and our vector-channel lattice, consider
N the usual linear AR (auto regressive) model
n
o y(')=z Ay (1=)) + g,(D), (L) :
v ,
A =1 )
7 i 3
i 4
-".\ . . . . . v1
oy where y () 1s an m-vector, each Aj 1s an m x m matnx of parameters to be estimated and ¢,(¢) is the error. )y
The least-squares lattice filter yields a least-squares estimate for the A; s that is recursive in both t and n. h
.'1
L . . N
'::: Now suppose that p (/) represents m sensors on the same flexible structure and that N observable modes p
] A
o 9
W h
. h
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s |
:. of the structure are excited. Then the AR model above with n something less than 2N should fit the data. :
. However, only in special circumstances, will the order of the minimum AR model that fits the data equal .
E.: the order of the structural vibrations, since the AR model has nm eigenvalues while the structural
w response has 2N eigenvalues. In general, the minimal AR model will have extrancous eigenvalues. If :'
. .
N modal frequencies and damping ratios are desired, their identification will be complicated severely by the h
o extraneous eigenvalues of the AR model. X
,‘ :: On the other hand, if the 4; ’s in the ARMA model are constrained to be scalars, then the munimum R’
) n is always 2N. This constraint represents significant information about the system; it amounts to wnting :
:" the scalar AR model for each component of the measurement vector and imposing the constraint that all :
‘:: m of these processes have the same AR coefficients because they are measurements of the same Lnear N
';. system. When the measurements are noisy, incorporating this information into the esiunation algonthm :
N ; is even more important than resolving the relation between the number of modes and the order of the AR 3
-“': model.  Using all information about the system is especially important in on-line identification of ' )
4
N )

distnibuted systemns like flexible structures. Even if the sensor data is virtually free of random noise. the

"y

number of excited modes often is greater than the allowable order of the lattice fiiter, so that the higher

. ®
-'/
®

:: frequency modes amount to unmodeled distrubance in the sensor data. ‘
2 The lattice derived here solves the problem of constraining the AR coefficients for multiple outputs N
o to be the same. We refer to this lattice as a vector-channel lattice because it treats several outputs as :
.'EE components of one vector measurement channel, as opposed 1o previous lattices, which treat cach scalar
.E output as a single channel. In general, there can be multiple vector measurement channels. When each
, 9
> channel contains only one component, the vector-channel lattice reduces to the standard .
::; multi-input-multi-output lattice, which we refer 1o as either the standard lattice or the scalar-channel ‘
'-:;_': lattice. :
. Although application of the classical recursive least-squares algorithm to the case where the ~ s
é’, measurements are vectors but the AR coefficients are scalars is straight forward and well known (sce [7]), '
, j a lattice filter for this problem apparently was not derived until Wiberg introduced his vibration lattice for -
¢
structural identification. The vector-channel lattice differs from the vibration lattice in two respects. First,
' :' one coefficient that is a scalar in Wiberg's and previous lattices is a matrix in the vector-channel lattice,
Ny the dimension of this matnx being determined by the dimension of he vector measurement channels. ;:
N 3
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q Second, the vibration lattice does not accomodate an input, or control; i.c., the moving average part of an
18 Y
\ ARMA model. This capability is, of course, important in adaptive identification] and control.  As in
.;- previous lattices, a moving average must be trcated as an additional measurement channel in the (
L v
D . . S . .
.:: vector-channel lattice.  The tnck is to constrain the AR cocfficients to be the same for all true 1,
&
measurement channels while allowing different coefficients for the input channels. Our mecthod for
Y - . . - . . . . ~
~'n including the MA terms in the vector-channel lattice is discussed in Section 3.3. -
- .
- -
::: In Section 2, we derive the vector-channel lattice filter and the algonthm for gencrating the AR '--v
4 o
coefficients from the lattice data. This derivation differs from previous denvations of least-squares lattices
¥
. L "
v in several importants respects, all of which stem from the fact that we work 1n a Hilbert space of infinutely '
“ ,'
. . . . . . . )
X long history vectors. Previous lattice denvations have dealt with finite history vectors of changng length
{. ‘
¥ and have relied heavily on matnx manipulation and/or geometric arguments, including nonorthogonal
’;'_- projecticns. We use neither type of argument; our denvation requires only clementary properties of .
e - . . :
’. orthogonal projections tn Hilbert space. R
v 4
‘h' .. . . - . : v)
> The ongnal motivation for the denvation here was not to develop a vector-channel lattice.  In

[12.13] we developed infinite dimensional ARMA models for certain classes of distnibuted systems, with

»
a

4

_:: one aim being to use these ARMA models as the basis for an approximation theory that will predict the .‘
:": behavior of lattices of increasing finite order in adaptive identification and control of infimite dimensional :
~ systems. In such analysis (which is continuing), infinite histones of inputs and outputs are used. IHence, .
:'_: the infinite dimensional history space in which we work. ::
x:' In Section 3. we summarnze the vector-channel lattice algorithm and discuss its unplementation. -
.:'_ From the denvation of the lattice, we deduce an algorithm for one-step-ahead prediction and show how
:- to make copies of an input so that in a vector ARMA process the AR coefficients can be constrained to ’
": be the same for cach channel but not the the MA cocfficients. ,
ﬁ‘ In Section 4, we compare numerical results obtained with standard and vector-channel lattices for the -
\E simulated forced vibrations of a flexible structure with two position measurements.  First, we use the ‘
: standard lattice to trcat the measuremets as two independent ARMA processes.  Then we use the -\_
i vector-channe! lattice to treat the measurements as the two components of one vector process, thereby =
:: imposing the constraint that cach measurcment process have the same AR cocfficients. We usc the lattice ;: s
R 5
a -3- N
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to identify both the number of significantly excited modes and the frequencies and damping ratios of those

modes. We give results for simulations both with and without noisy measurcments.
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~ 2. DERIVATION

Definttions and Order Updates

N The history space in this paper is the following Hilbert space of infinite column vectors: :
1 N -'
Y\ = T x] x]' .17 :each x;is a real m-vector 3
A e A 3
. and [WlI° = <y, ¢y > < oo
5 at
- where v
e o &
» N . ~ o~
o <./,,¢/>—Z ATRTY (2.1) ]
» =1 v
.
0y
-~ +
}: and 4 (the forgetting factor) is a positive real number. Throughout this paper, <...> mecans the inner
1,
¥ . )
) : product in (2.1). &
"I-
] The following denvation assumes a sampled process with p channels, cach of which contains m scalar )
!. ’
'\ measurements. In other words, the measurement from channel 1 at time t is the m-vector ::
5\ . ..
- A
: A= ¥ Ao i=tep (2.2) .
v
A ’
3 ‘™
N The infinite history vector of channel 1 is o
L - . e
3 vio=1 o) Ge-m" T (2.3) :
" _ ) ¢
:: In applications, all but a finite number of terms in ¢4t) can be set to zero. The main advantage of the \
:C‘ infinite dimensional history space for the lattice derivation is not that it allows histories of infinite length, :::
N .
N but that it accomodates histories of all finite lengths in the same space. _
A "
.l -:
» The following definitions are necessary. For any integer t and nonnegative integer n: )
P by
o S(1) = ! P 24 "
N S(ty=span { ¥(1), .., ¥"(1) ) (2.4) ~
b, Hy)= {0}, H)=St-1)®St-2®..® St~ n) (2.5 N
; ¥
. P.(1) = Orthogonal Projection onto /(1) (2.6) t
» ‘. 1
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Eg(l)z S0, [:{(l) =[[ - PJLt)] Sl). forward error space 2.7)

s{'."-

5y

1:'3(1) =5, Ef,’(l): (/I - Pe+1)] S(t—=n), fackward error space (2.8)
Pﬁ(t) = Orthogonal projection onto k"j,;(l) , I’:(r) = Orthogonal projection onto [:',“:(1) (2.9) Wt

Note that the definition of the backward error space F£Zt~ 1) amounts to a Gram-Schmidt )

orthogonalization of the history spaces S(t-1), ..., S(t-n).

The rest of this section denives a number of recursions from the definitions given so far. [Like o
(2.4)-(2.9), subsequent equations in this section are valid for any integer t and any nonnegative integer n, ..':'u

except where otherwise indicated. Of course, for implementation of the lattice algonthm, initialization at .‘Q,'

some finite initial time is necessary, and this is discussed in Section 3. In the current section, initialization 3

need not be considered.

A first consequence of the foregoing definitions 1s

-
a
- -

Lo Lo,
Hop ()= H(t— )® the— )= 11 0@ EXe- 1) (2.10)

LA A

1
where the notation @ indicates the direct sum of orthogonal subspaces of €,(R™, 4). Because of (2.10)

I

RN AL

A

’
4 5

v
£ o

and since Ef(1) and E£4t ~— 1) are orthogonal to /1,(1) , clementary properties of projection yicld

,\
to
Z
oy

Poi(D=Pft—1) + Ple—1) =P 0y + Poi—1)

v 14

£

b

Pty PAty=Poi—1) Pty=10. (2.12)

. .
7
X

z»'

From (2.11) and (2.12), it follows that

[STh1
Y

Ay
PR
£

([— Pt+ 1) 1=01- P11 1= P01, (2.13)

v .
T

)
.

’
r

(/= P 1=0 1~ Pl~-1)T [ - P 1. (2.14)

.,,.
UL
l. “ ‘, "

B

The definitions of the forward and backward error vectors are similar to (2.7) and (2.8):

DR
»
]
.

-
"
»

fa=vi , fio=01- P01 v, 1=1, ..p Forward error (2.15)

| ®

N9

b=y . bity=[1 = P(t+1)]yt~n), i=1, .p Backwarderror  (2.16)
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N ) ‘
. Then, : '
El(0)=span { fi(1)} and ES(t)=span{bt)}, i=1, ..p. (2.17)
\- ‘
1 -
A The order update formulas for the forward and backward error vectors follow from (2.13)-(2.16). X
i .
B Substituting (2.14) into (2.15) for n+ | yiclds s,
i SaniO=01 = P W0 =11~ Ple= DI {1 = P07 ¥k0), v
! N,
b
~' which in view of (2.7) becomes n
' ~
Srani®=[1 = Plt=1D] [0=/1{0) = Pole= DS o0 (2.18) -
& R
R ")
) fori=1.2, .. p. Similarly, (2.13) and (2.16) with (2.8) yield ]
) s
. . . L8
b0 = bt — 1) — PLOBY - 1). (2.19) ]
o 4
b \
:: To make these order update equations useful, the following clementary and standard result is required :
o
; (sce [14], page 56). ~
.: lemma 2.1. Let H be a real Hilbert space, E=span{h,, h;, .., h,} a subspace of H and Pg the ~
X orthogonal projection of H onto £. Then for any h € H, :'.
- )
‘, Peh=[h hy . hyla (= z ah ) (2.20) .
f i=1 N
! "
4 where a € RP satisfies -
) Rga=d (2.21) p
» :i.’
:: with Rg the nonnegative symmetric matrix whose (i,j) element is < A;, h; >y and d the p-vector whose i .'f'
-.f element 1s < A, h >y . For each he H, at least one solution to (2.21) exists. The matrix Rg is positive .
:' definite if and only if the vectors h; are lincarly independent. N
” The tollowing matrices are useful for applying Lemma 2.1 in (2.18) and (2.19). Forn=0,1, ...: N
g K, () = p x p matrix whose (1,§) element is < ff,(l), b{,(( ~b>, (2.22) )
N . r.l
: R:(l)-—- p x p matnx whose (i,j) element i1s < f:,(l), [/,,(1) > (2.23) ;."
: :
) ::

P N R R AR i e
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1 )
) ;
o
[} - [ j .n
.':: R,’,(l):p x p matrix whose (1)) clement 15 < b,',(l), bj,,(l) > . (2.29) o
A \
By Also, we define -
b
0 LD T1=0/a0 S20 - f510 (60 I=0540 b)) . & 1 (2.25)
,‘A -
N 1e., [ £,(¢)] is the matrix containing the p infinitely long columns f%(t) , and [ b,(¢) ] is the corresponding R
\. "-
"y matnx containing the 6,(¢)’'s. With these definitions and (2.17), Lemma 2.1 imples that (2.18) and (2.19) -
AS ]
o are equivalent to 2
- [foi® I=0 A0 ] = T o= D 1 RT= DKL, (2.26)
-
', _ , ‘
) [ bner(0 1= bt= 11 = [ S0 1 RS Kayr(0). (2.27) ‘_
’ :
'!.- ; S
;_: Here, R7£,(1) K,,,(t) means any pxp matrix « such that R¥() a = K, (1) and R;[,(¢— 1) K], \(¢) means ‘_"
' Y,
. any pxp matrix 8 such that Ri(¢— 1) B = K], ,(1). That at least one such x and one such f exist follows !
v trom Lemma 2.1 and the existence of the projections in (2.18) and (2.19). ™
:_'.'- While (2.26) and (2.27) are more explicit than (2.18) and (2.19), they still are not useful for é
'_t computation because columns of the matnces [ f,(1)] and [ b,(1)] are 'mﬁnitelyl long. It tums out that >
2 P
R only the top m rows of (2.26) and (2.27) are used in the lattice filter. Hence, it is useful to define the :
;-: following mxp matnces: :'.
. >
-.', e (Y= Top mrowsof [ f(1) ], r{)= Top mrowsof [ b,(¢) ] (2.28)
l\ L ]
[ ;
Then, the top m rows of (2.26) and (2.27) arc ;
2 3
" N
K enp (0= et — r{t— DR (1= DKL (1),  forward residual (2.29) =
Fapt()=rt—= 1) — e() RT() Ky y(6),  backward residual. (2.30) ;
,
2 These two equations are used 1n the lattice filter for order updates of the forward and backward residuals. g
! A
5
ra For order updates of R4¢) and R'(¢), substituting (2.29) and (2.30) into (2.23) and (2.24) yields ol
"- »
. Rip ()= RO = K (D R(1= D Ky (0), R
N !
N \
ey
‘)
AN
Rs pt .
Y .
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Rh ()= RYt—=1) = K] () R7S(0) K (1)

-~

:fl."l

00

Time Updates

1.

-

The following vectors are elements of £,(R™, £) :

)
p - — position i
b d=[0 0 .1 0 .0 .37, i=12 .m (2.31)

-
v
a,

i+ D=1 - PU+1)] ¢, i=12 .. m: (2.32)

o

«
v Y.

7

s 1;'
l-.

where P (¢t + 1) is the projection onto H,(1+ 1), as before. The subspace

BaP Ay

/\ 1

Hyt+ D) =span (Y0, o, W20, W' (t—nt 1), o WPU—n+ D) p o 0™

Rariful ol

a2

R

R
2

st

1s useful in deniving the time update equations for the vanables K, (1) . From (2.3)-(2.5) it follows that ¢

O(m) ) O(m)
vla-n) o \yfu-n )

0 ) Iy o
llf (l—n) v d/p(l—n)/ y D 6

Y P
 Jnjbte oyl

4

H(t+ 1) = span (2.33)

o

» 2,

[

v

A 1 A A
Hyt+ D=1+ D@ span{ ¢t + 1), ., ¢+ 1)}, (2.34)

where 00 is the mxm zero matnx. If

A A
P,(t+ 1)= Projection onto H,(t+ 1) and

* . . A Am. N
N Q,(t+ 1)= Projection onto span { ¢t + 1), .., 7(t+ 1)}, (2.39)

N
0K N

ol it follows from (2.34) that P (¢t + )= P ¢+ 1) + Q¢+ 1), so that

,4.
LA
o

(7= P+ D)I=(1 - P+ D] + Oft+1). (2.36)
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~
5'
-~ Substituting (2.36) into (2.16) yiclds
Y B=11 +1 , (2.37)
~
N where
~] . | ‘
- H=[1- P+ 1]y (t-n), I'=Q,+ 1) y/t—n).
“
A From (2.3) and (2.31) it follows that
~ )
o . (m) .
, 0 J k
(t—n)= ; + t—n
._ v - n <wf(:~n—1)) ;yk( )6
o
N Asin (2.2), p4 is the k™ scalar measurement in channel j. Also, in view of (2.33),
e
.
. A / 0(’") / 0("") ) ( 0(”7) )
A M=[/-P(t+1] . = . = i . 2.38
et L= ”(M:—a—h) ([/—P,,(:)w/(r—n—n, b=, (239
xl
s
) 2 According to (2.35) and Lemma 2.1,
N F=[ ¢+ 1) ] GIl(od, (2.39)
o
1.
<o where
y ¥ A A A A
A [0+ 1) ]=[ oM+ 1) SM+1) . ¢T+1) 7, (2.40)
-',:' G (1) = mx m matnx whose (1,)) element 1s < q?)ﬁ,(t + 1), (JAS{,(( + 1) >, (241
v
< d = m-vector whose k element 1s < czﬁ(l + 1), t}/j(l —-n) > . (2.42)
';'.
s The expression G; Y1) d means any m-vector « such that G,(f)a = d, and it follows from Lemma 2.1 that
S
o at least one such « exists. Since [/ — P,(t+ 1) ] is self-adjoint (being an orthogonal projection),
s A A
: k element of d= < ¢ (1 + Hyt—n) > (2.43)
::: s<¢*[ - P+ 1)1 lu—n) > =< ¢*, bl >=r0;
.’\
i.e., the vector d in (2.42) is the j*' column of the matrix (0.
v
”
N - 10 - K

\ \ \ \' _-\ \ \."\ \-' '\' N '."'J'""}‘J" h ')"I"n‘.l"l.‘.l'a‘,‘.e‘*".’--"-'.\‘..‘\ -‘.‘{\_. _._ _\ N - \
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Now, since [/ — P,(t+ 1)] is an orthogonal projection, it is sclf-adjoint and equal to its square.

Hence, from (2.37),
<f,,(l+ 1, b (1)>_< n//(t+ 1), b"(l)> =< i(z+ H, > + <n//’(t+ D, I'>. (2.44)
According to (2.1) and (2.38),

<+ 1), 0 >=4 <ylo), ble—1)>=4 </, blt—1 > . (2.45)

Since

<yl ), et ) > =< =P+ DI+ D), 6F >
=< fla+ ), ¢f > =X+,

using " from (2.39)-(2.43) yields

< ¥le+ 1), T >=[i" column of e (¢ + 1)]17 G '(¢) [j™ column of r,(1)] . (2.46)

Now, equations {2.44)-(2.46) show that the time update equation for K, ,(¢) (defined by (2.22) )15

Kot + DN=4K, (D) + e, (1+ NG ( ().

The final equation nceded to complete the residual error lattice is the order update equation for

G.(1y. From (2.32) and (2.41), the elements of this matnx are

G =< ¢+ 1), P+ 1) > =< des ), ¢/ >

SO c o (2.47)
=<¢', ¢ > — <P+, ¢ >.
The subspace H,(t + 1) can be written as the following direct sum of orthogonal subspaces:
by L 1
Ht+ )= E_(0® E_,(0® .. @ E0),
so that
Plt+ D)=PP (0 + PP+ .. + PO, (2.48)
According to (2.17), (2,28) and Lemma 2.1,
<11 -
y Vs f .:".'\ Wl "f 7 ‘;' ':.-".-"'./ ‘.r - r:..r -.-".-'-z':r'.' N J‘-’{:-f"' A .- AV

- -

LR % % I )

RN




TV VROV WV WU W W,

Aoy
S
[} » .
" re'(o
. < g’ ¢ > =1 o1 RTW
W e
) ri (1)
o
:t.l Thercfore, in view of (2.48), (2.47) becomes
. " n—I
N GD=1- > rddRTOrR0, n=12 .. (2.49)
S
~' k=0
\I
‘.I
. Since Pyt + 1)= 0 (recall (2.5), (2.6)), it follows from (2.32) and (2.41) that
) Golt)=1 . (2.50)
o
8
A Also, (2.49) and (2.50) yicld
- Gupi(D=G 1) — rfO R () r (), n=012... (2.51)
; ::-\. It should be noted that in previous lattices, including the lattice in [10], the update equation
4, I\
'J":‘ corresponding to this last cquation has a scalar G,(1) instead of the mxm matrix G,(¢) here.
’~
¥ .
, :’. AR Coefhicients
N
J 'ﬁ
- For cach i=1...p. P,(1)y4?) can be written as a linear combination of the history vectors that span
. {1,(1) ,and P 1+ )4t — n) can be written as a lincar combination of the history vectors that span
*‘
. : H,{t+ 1) . This means that, with the notation in (2.25),
>
2,
- n
< [AH01=T¥01 = > =1 4,,(), n=12... (2.52)
D \'_. =1
oo
s n
‘ (01=[¥e—m] = ) [¥(e=j+1)] By (1), n=12.. (2.53)
L =1
0
24
P
:" where A4, (1) and B, (1) are p x p matrices and
v
> [v@ I=¥'0 ¥ . ¥ 1. (254)
N
.
%
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Since [ f,(¢) ] 1s the error remaining after orthogonal projection of the data taken through time t (recall

(2.2)-(2.3)) onto the history space #,(t), the cocfficient matrices .4,,/(1) minimze the €,(R™, 4) norm of

[ /()] over all autoregressive models of order n. The matrices A, (1) are called the AR cocfficients at N
-
time t . ‘
Substituting (2.52) and (2.53) into the order updates in (2.26) and (2.27) and matching coeflicients of
the history vectors y{t — ;) vields /
Apgy; ()= Ay (0= By (1= HRY (= DKL (1), j=12..n n=12.. (2.55)
i X
Apii a1 (0= Rt = DKy (D), n=012 . (2.36) ’
Byijs1 ()= B (1= 1) = 4, () R Ky (1) j=12,.,n, n=12,. (2.57) ]
L b
o (
- e o, . {
o Bopr 1 (0= R0 Ky (1), n=012 ... (2.58) :
? n
The AR coefficients, A, (¢} , can be generated with (2.55)-(2.58); however, this algorithm requires
: that the AR coefficients be calculated at every sampling time because B, {t— 1) is needed to compute :
‘ :
i o A,4+1(2). The following denvation provides an algonthm for computing the AR coefficients at any time t
s
- without the values of A (1= 1) and B,,J-(t— 1.
4
-, Using (2.11) in (2.32) with the notation in (2.40) yields
"
»
< AL . .
‘ .
Srpilt+ )=[1 = Ppyy(t+ )16 =[1 = Pe+ Do - PG
o r’i',l([) :
. A [ Ay —_ .
- =g+ 1) = PUDS = dut+ 1) = [bO]IR (0] .:
.': r,i,‘p(l) iy
-t "
- or N
~ \ \ o :
o (Pnat+ DI=[ 1+ 1)] = [0 TR()r,(1). (2.59) .
- »
“
Since P(t+ 1)¢‘ € H,(t+ 1), it follows from (2.5) and (2.32) that there exist p x m matrices C,,J(l)
N
such that X
.
A
.
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[dpu(t+D]=[0] - > Lol=j+ D] G0, n=12. (2.60)

=1

where [p J=[ ¢! @2 ... ¢™ 1. Substituting (2.53) and (2.60) into (2.59) and matching coeflicients of

the history vectors: vields
Crpr; (0= Cpy () = By, (DR (FI()  j=12m, n=12.., (2.61)

Coprnet (=R (OrN(), n=012,.. (2.62)

The expression [ lg,,(l)] will denote the part of [ 5,(¢) ] below the first m rows. Then, from (2.33)

5 1=T¥—n=D1~ > (W=)IBuy(0), n=12... (2.63)

=1

Next, the developement in (2.37)-(2.43) yields

= ot o =1 >
[b,,<z)]—[[bn(,_ mJ £ [oat+ DTG0 0. (2.64)

After substitution of (2.60) into (2.64), the new equation from row (m + 1) down is

n

[b()]=[bft—1)] ~ Z (W= N]Co, (NG (DD, n=12.. (2.63)
=1

Finally, equating the right sides of (2.63) and (2.653), using the right side of (2.53) for bt — 1), and

matching the coefficients of the history vectors yields

B, j(t—=1=8,,() — C (G (Or(t),  j=12.0n,  n=12... (2.66)

‘The algorithm consisting of equations (2.55)-(2.58), (2.61), (2.62) and (2.66) can be started at any
time to obtain the AR coefficients. The order of the AR cocflicients nced not remain the same from one
time to another. In addition to this flexibility, this method is computationally attractive when the
sampling ratc i1s high but the plant and/or control parameters need not be updated at every sample time.

‘The residual filter is the only part that must be computed at every time step.
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3 IMPLEMENTATION

Summary of the 1 attice Aleonthms

"

My Oy -'."5 .

Recall the definition (2.2) for the measurement vectors p4¢) . We define them - p matnx

y=0r'w ¥ . 0]

.‘_
%

A LA

which contains the measurements at time t. We start the lattice filter at time t=0 with the tollowing

TR PP

-

initialization:

Ri~N=R(\-D=al | K, (=0 for n+1>:20 . (3.1)

o

=
P g

where o is a small number. If ¢ =0, this initialization corresponds to what commonly 1s called

o

prewindowing, which means taking y (¢) =0 for all r< 0. We have found that taking ¢ on the order of

10—7 avoids numerical problems with inverting certain matrices in the filter, as discussed below.

' ‘-h.-;_r > )’.;‘"4'

Residuad Error Lattice

el d
Len!

For cach t > 0:

-

ALl

e =ry(=y(0. Ryt = Rin =0’ wo v 2 RYt—1), Gyty=1. (3.2) /

7 T

\

Foreacht > I, forn=0to t-1:

"\}‘-«' whY

Ky (D=4 Ky (t= Dk elin Gl = Drge =1 (3.3) ,

err(D)= D) = rylt— DR, (= DKty (D) (3.4)

RN

Fastl0) = 1ot = 1) — e 00 R W) K1 () (3.5)

oy
-s--ﬂ n.. l‘. ‘S
- XX,

RS, (0= R0 = Ky (DR (1= DKy (0) (3.6) :

RE (0= RNt = 1) ~ K] (D R;(1) Koy (1) (3.7

&
b
e 3 ¥ M

2 &L

Gror(D)= G(0) — rOR (W) n=012.. (3.8)

vt

.
RO

The maximum n can be increased by onc with cach successive time step.  In practice, though, n 15

L AT

not increased past some fixed order, due to finite computational capacity.
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AR Coctficients

The top m rows of (2.52) are

e f)= Z)(t DAy n=12 ...

At any time t, the AR coefficients 4, (1) can be generated from the residual filter data by the following:

Forn = 1,t-1 andfori=1n

Crar (0= Coi(0) = B (R0 r)(0) (3.9)
By i (=[8,,(1) — mAﬁln nr(n] — (0) Ry (1) K (D) (3.10)
Appr (0= A () = [ B, () = Cri(0G (0] R;’(z— DKL (0 (3.11)

where equations (2.56), {2.58), and (2.62) arc used as end conditions.

Matnx Inverses

It R&(0), Ri(1) and G, (1) are nonsingular, then R;4t), R; (1) and G;71(1) are the respective inverses. If
any of these matrices is singular, then the inverse should be interpreted as indicated after (2.27). If the
measurements are independent, then RE(0). Ri(0) and G,(¢) are positive definite unless one of the channels
for a lincar combination of the channels) fits the n?® order AR model exactly. We have found, however,

that letting letting R§( - 1) = —1)= g [ eliminates most numencal problems.

One Step Ahead Prediction

The n order least-squares prediction of y(¢) , based on measurements up to and including time t-1,
q p y £

n
=Z U= A -1, =12 ... (3.12)

=1
Equivalently, the least-squares prediction of y () is the matnx ﬁ,,(l) that, if taken as the measurement at
time t, yiclds e,(¢) = 0. This sccond interpretation ofﬁ,,(l) lcads to an algonthm for its computation.

Writing (2.15) in the notation of (2.25) and (2.54) yiclds
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e [A0)=[1-P(0] [¥(D)]
’ , gumer ] (3.13)
=[{l-P)1 {1y + [ - PUn] W= 1)
' gy
1,
ho
i
o The fact that the top m rows of [ /(1) ] are e,(¢) and an argument similar to the argument involving
S
(2.47)-(2.50) show that the top m rows of (3.13) are
b e )= G t—1)y(t) + &),
o
~, where ¢ (1) is the value of e,(¢) gencerated by the lattice for y(¢) = 0. The prediction then is
" -
_, P=— Glt—1Def), n=12 ... (.14
o
¢
<
e This prediction can be generated with only (3.2)-(3.4) of the residual error lattice algonthm.
o’
L3y
¥
~ .
ot Including Known Inputs
'.‘
>
'-:: When there is only one measurement 1n each channel (1.e., m = 1), the algonthm presented in Section
_ 2 reduces to the lattices derived in [2] and {3]. One of the major advantages of the algonthm in this
RS
S
. paper, as mentioned before, is its capacity to accomodate an ARMA model in which all outputs have the
'l
:‘ same Auto Regressive structure.  For such a model, the following imbedding accomodates an mnput that
-2
A does not have the same MA cocthicients for cach channel.
- . - o
: Let there be m scalar outputs, p}(¢) , and one scalar input u(t). ‘The first channel then s [ p(e).
g
o yA(0) 17 . The second channel is the m-vector [ u(t), 0,... 0 17. The third channcl is [ 0. u(t). 0.... 0 17,
v
A and finally, the (m + 1) channel is the m-vector [ 0, 0, ...0, u(t) }7
R It is easy to sce that with these definitions, the desired model can be imbedded into a p-channel
‘-‘n
" (p=m+ ) vector-channel Auto Regressive model. The extension to the case of more than one input is
v obvious. For m outputs and k inputs, the resulting vector-channel lattice has one channel for the outputs
”
L and mk channels for the inputs (and the corresponding copies).
N
i
~e
<
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)
o
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4. EXAMPLE

Descnption of the Structure and Data Generation

A flexible beam is cantilivered to a rigid disc with fixed center, and a torsional spring is attached to
the disc. In-plane motion, including the lincar transverse vibration of the beam is modeled. The beam is
modeled as an Euler-Bernoulli beam with the properties listed in Table 1. The system has one input, the

torque applied to the hub, and two outputs, the elastic tip deflection n and hub rotation 6.

Lo o e 4

FIGURE 1. The Beam-Hub Model

FIiNITE
CLEMENTS

ContTRoL
18 3

—
Voreonal Rieip Hua
S &
TABLE 1. Structural Charactenstics

Mass per umt length .000288 slug/ inch

Hub moment of inertia = 85.6 slg in’

El for the beam = 40,506,000 slug in3/sec?
Torsional spring constant = 85,600 Ib-in

Beam length = 1036.7 inches

Hub radius = 46 inches

Modal Damping Ratio .00S (.5 % cntical) in each mode

To generate input-output data, the state space representation of the first 12 modes of the structure
was excited by a sequence of piecewise constant torques. A fimte element model with 15 uniform beam
elements (31 degrees of freedom) was used to compute the first 12 modes of the structure. The length of

the sampling interval and the duration of the piecewise constant torques was .05 seconds (20 samples per
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seccond).  The nput torque sequence was obtained from an IMSL subroutine that generates Gaussian :'-
A
A
random scquences with mean zero and vanance 10,000. )
v,
* 1
Table 2 contains the true discrete-time system eigenvalues and their magnitudes, and the damping iy
r
ratios (Zeta) and frequencies (Freq in rad/s) for the corresponding continuous-time eigenvalues. (From -;
P ]
here on, true system means the first 12 modes of the finite element model.) The continuous-time !
o3
frequencies and damping ratios were obtained from the logarithms of the discrete-time cigenvalues. The ﬁ
-
first five modes of the system are below the Nyquist frequency (10 Hz). For these modes, the frequencies -;
A
and damping ratios in the first five rows of Table 2 are correct. For the modes above the Nyquist ;
frequency, aliasing produces frequencies lower than the correct values and damping ratios higher than the :_'..
A
-
correct values. (The aliased frequencies and damping ratios are listed in Table 2 for companson with the ;f_ \
'~
subsequent eigenvalue estimates.) In Table 2, eigenvalucs are ordered according to magnitudes. ¥
]
e
TABLE 2. True System Eigenvalues (Discrete-Time) 14
p
d
Redl Part  Imaginary Part Zeta Freq Magnitude W
-
I 0.999390  0.034733 J.005000  (.694825  (1.999827 L
20961521  0.269716 0.005000  5.469626  0.998634 s
3 0.67648% 0.730860 0.005006 16.480264 (.995888 =
4 -0.099991 0.986622 0.005000 33.435967 0.991676 N
5 -0.932683 (0.319972 0.005000 56.222164 0.986043 :-:_
2
6 -0.434545  0.872270 0.010383 40.842544  0.979018 -
7 0924166  0.296545 (1.095783  6.209997  0.970578 'C-"
S -0.164358  0.946500 0.023021 34.854594  0.960664 e
9 -0.515252  0.797210 0.024291 42.891594 0949225 . o
10 0.766445  0.537675 0.107091 12.234877 0.936233 :
11 -0.759660 0.521941 0.032095 50.791924  0.921686 ':
12 0.503091 0.753000 0.100486 19.635824  (.905600 )
'
+ 9
“n
For studyving the cffects of measurement noise, small amounts of white noise were added to the o
outputs and the resulting noisy measurements were fed into the lattice filters. Note that three uncorrelated ﬁ
-,'
sequences of white noise were used. The first was the torque, which was an input known to the lattice; L
LS,
hence this scquence was white noisc only in the sense of its statistics and the lattice saw it as a known N
.':\
deterministic input. The other two white noise scquences were scaled by various amounts and, in some -
cascs, added to the data from the two sensors to produce the noisy measurement sequences that were fed .‘" \
into the lattice. This measurement noise was not known to the lattice. ;':::
o
~
N
19 - :;
~
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It is well known that, in the presence of measurement noise, the least-squares method yields biased
estimates for the AR coefficients. If it is essential to obtain accurate estimates for these parameters, other
identification methods such as extended least squares (ELS) or instrumental vanable (IV) methods can be
used. The lecast-squares lattice can be modified casily for the ELS method. For lattice implementation of

the IV method, sce [15] or [16].

We processed input;output data with the lattice filters to estimate the number of excited modes (one
half of the plant order) and the ARMA coefficients. From the AR coefficients, we obtained estimates for
plant cigenvalues. We used a vector-channel lattice and two standard lattices for companson. The
vector-channel lattice had three channels, cach with two components, (p=3, m=2). Channel | contained
the two measurements (hub rotation and tip deflection); Channels 2 and 3 contained, as descnibed at the
end of section 3, the required copies of the input torque. We used the two standard lattices independently
for the hub rotation measurement and for the tip deflection measurement. Each of these lattices had two
one dimensional channels (p=2, m= 1), Channel 1 for the measurement (hub or tip) and Channel 2 for

the input torque. Due to the ambiguous relationship between minimal lattice order and the number of

A

excited modes, mentioned 1n Section 1, and the possibility of extrancous cigenvalues, we did not use both

measurements together in a standard multi-input-multi-output lattice.  For all runs, the value of the

forgetting factor 2 was 0.95.

-

Order Detenmmination

[

Recall the definition (2.23) for Ry(1) . Each diagonal element of this matrix is the square of the n®

EL R

order forward error norm for the corresponding channel.  Figure 2, which was obtained from the

g

vector-channel lattice after 300 steps, shows the behavior of the (1,1) clement of RE(¢) (the norm of the

s
B

B PR

forwasr crror for the first vector measurement channel) as n increases. Recall that the first channel of the
vector-channel lattice contains the measurements from both sensors. The lowest curve corresponds to the
no-notse case. The other curves correspond to successively increasing amounts of noise added to the

measurements.

I Y

The effective order of the structure, which 1s twice the number of significantly excited modes, can be )

determined from how R(¢) vanies with the lattice order n. The most important feature of the three curves :’

L
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in Figure 2 is the drop as the lattice order goes from 10 to 12 (1.e.. from 5 10 6 modes). This drop

indicates that the effective order of structure 1s 12,

The behavior of the (1,1) element of Ry(¢) in the absence of measurement noise indicates that six
modes are excited substantially by the wnput. The remanmg six modes in the sunulation model are
excited minimally and contribute little to the output. The drastic drop in the graph between n=10 and
n= 12 occurs when the order of the filter matches the number of substantially exerted modes. ( The plant
order must be even.) As n increases past 12, more and more of the output from the mimumnally excited
modes is accounted for, until the forward crror falls to zero at n = 24 because a 247 order ARMA model

fits all of the output.

When small amounts of noise are added to the measurements, the graph changes.  The drop sull
occurs between 10 and 12, but its magnitude decreases as the amount of measurement noise iNCredses.
Furthermore, as n increases past 12, the (1,1 clement of Ry(r) bardly decreases at all. The excitation of
the structure s the same with and without measurement nonse, but the output from the minumally exated
modes is lost in the measurement noise and the filter cannot distinguish these modes from the noise.
With increasing measurement noise, the graph approaches a level stright line, indicating that the filter 15

distinguishing less and less data from the structure and notse.

The accuracy of the subsequent cigenvalue estimates indicates, as expected, that the five sub-Nyquist
frequency modes are excited most and the first mode above the Nyvquist frequencey 1s excited substantially
though lass than the first five. Different input sequences, icluding combinations of many siewaves,
produced the same behavior.  In all cases, only the freqaencies below Nyquist frequency are excited

substantially. This 1s not surpnizing, since the input 1s applicd at the sampling frequency.

Several authors have suggested critena to estumate the order of a system from input-output data, sce

[9.17]. Each of these critena looks for a minimum of a scalar function of the form

F(ry=t In [ 1/t x RYD] + nxf(1). (4.1)

The major difference among these cniteria is the choice of f(1) . For the systems studied here, a vancty of

these methods were attempted and none performed noticeably better than the (1,1) element of RE(¢) alone,

as used in Figure 2.
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Figure 2. Norm of the Forward Error vs. Lattice Order
Log { (1,1) Element ofRg(?) }
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Estimation of Eigenvalues, Frequencies and Damping Rations

To estimate the cigenvalues of the structure, we generated the estimates of the AR coefficients with
the algonthm in Section 3, for vanous orders, and computed the eigenvalues of the AR model. The only
case in which the estimated AR coefficients were correct was where there was no sensor noise and the
lattice order was 24 (full order; i.e., the order of the true system), but the estimated cigenvalues for the
sub-Nyquist modes are generally good for low measurement noise and lattice order 18 or greater. This is
possible because most of the AR coefficients of a large order system are highly sensitive to perturbations
in the cigenvalues and, conversely, the eigenvalues are relatively msensitive to perturbations in the AR
cocflictents.  The relationship established by Cayley-Hamilton between the AR coefficients and the

cigenvalues makes the high sensitivity of AR coetlicients with respect to eigenvalues apparent.

In this section, we are interested primarily in the effects of measurement notse and unmodeled modes.
In the absence of noise, all the eigenvalues corresponding to the higher modes were identified, given high
cnough filter order. The full-order vector-channel lattice (order 24) identified all of the system cigenvaluces
with four or more significant digits, cxcept one of the faster modes, which had only three digit accuracy.
The full-order standard lattice for cither mcasurement produced eigenvalue estimates with 2 to 3 accurate
simificant digits. Table 3 compares standard and vector-channel lattices for the 18%-order filter with no

notse added to the measurements.

In Tubles 3 and 4, complex cigenvalues are represented by their continuous-time damping ratio and
frequency and diserete-time magnitude.  The frequencies, damping ratios and magnitudes cstimated for the
first five modes are listed first.  Then, the aliased frequencies and damping ratios estimated for the
remaining modes are ordered according to the magnitude of the corresponding discrete-time eigenvalues.
{Thesc aliased frequencies and damping ratios are all that can be identified from the input/output data,
without other knowledge of the true system.) In practice, the magnitudes of the cigenvalues are likely to
be the only tool for proper ordering. It is common in structures, for example, that discrete-time

eigenvalues corrsponding to higher modes have smaller magnitudes.

To study the effects of measurement noise, v -+ added smail amounts of noise, roughly 3% of the
output on average, to the measurements. Table 4 compares the scalar and vector-channel lattices for this

Case.
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TABLE 3. Lattice Compansons : No Notse

£

Order = 138

After 1500 Steps

: Zcta Freq Mag \
: Tip Displaécmcnt Lattice
v 01793 0.6866  1.0063 t
R 0.0057 54705 0.9984
-, 0.0050 164786  0.9959
i _ 0.0051 33,4303 0.9914
- 0.0050 56.2204 0.9861
0.0122 10.7381 0.9754
oy 0.0474 38.4888 0.8913 '

\ 0.0785 34.8581 0.8717

) positive real 0.2882

v negative real 0.1907
- i
P o Hub Rotation Lattice
N 01301 0.6933  0.9955 ;
'. 0).0060 54721 .9984
. 0.0050 16.4791 .9959
: 0.0052 33.4310 0.9913
A 0.0050  56.2205  0.9861 y
| ::., 0.0128 40.7135 09744 o

N 0.0487 48.6059 0.8882 g
AN 0.0953 352980  0.8445 ]
NS 08384 316749 0.0875
3
i
-3
::\ Vector-Channel T attice X
LS

0.0809 0.6987  0.9972
‘:{- ).0060 5.4696 0.9984
e 0.0050 16.4790 0.9959
.-::. 0.0052 33.4304 09914
::\: 0.0050 56.2214 0.9861
B 0.0125 40.7320 0.9748
N 0.0470 48.6657 0.8919

o 0.0886 35.1743 0.8551

! positine real 0.1289

‘;,: negative real 0.0697
u'*.
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.o“ TABLE 4. Lattice Companson: Noisy Measurements
0
’ Order = 24 (Full Order) Order = 20 Order = 18
" After 1200 Steps After 1500 Steps After 1500 Steps hy
;‘ Zeta Freq Mag Zeta Freq Mag Zeta Freq Mag )
Ay
" Tip Displacement Lattice Tip Displacement Lattice Tip Displacement Lattice ;.
ol -0.0813 0.7219 1.0029 0.9710 0.2177 0.9567 0.0031 5.459| 0.9991
.(: 0.0046 5.4668 0.9988 0.0031 5.4718 0.9992 0.0040 164651  0.9967
_‘:'. 0.0052 16.4814 0.9957 0.0040 16.4631  0.9967 0.0057 33.4285  0.9905
*:: 0.0056  33.4273 0.9907 0.0057 33.4298 0.9906 0.0041 56.3500  0.9886
[ 0.0056  56.2121 0.9845 0.0039 56.3435 0.9890 -0.0059 238576  1.0070
0.0103  40.7798  0.9793 0.0141 23.6348 0.9835 0.0133 40.8553  0.9731
0.0129  44.9677 09714 0.0119 40.8653  0.9760 0.0203 464778 09538
B/ 0.0151 50.1422 0.9627 0.0142 46.7545 0.9674 positive real 0.9759 N
W 0.0676  22.8835 0.9254 0.4058 24.7266 0.5776 ncgative real 0.9238
.9) 0.0564  28.5524 0.9226 negative real 0.9338 positive real 0.9001 )
K 'j 0.3655  15.4049 0.7390 negative real 0.3413 positive real 0.0355 <
A negative real 0.9540 :
¥ negative real 0.3509 :
B \. R . ' g
:.- Hub Rotation Lattice Hub Rotation Lattice Hub Rotation Lattice )
IJ .
'a: 0.0593 0.6802 0.9980 0.3404 0.7049 0.9873 0.0153 54965  0.9938 ‘
: al 0.0048 5.4703 0.9987 0.0108 5.4909 0.9970 0.0044 164938  0.9964 .
MO 0.0051 16.4789 0.9958 0.0049 16.4915  0.9960 0.0054 334298 0.9909 y
‘ 0.0054  33.4057 0.9911 0.0054 33.4236 0.9909 0.0064 56.2400 0.9821 )
o 0.0052 56.2204 0.9854 0.0059 56.2616  0.9835 0.0014 41.1753  0.9972
-4 0.0035 459140 0.9921 -0.0057 48.1314 1.0138 0.0527 240119 09386
~ 00123  40.6022 0.9754 0.0048 41.0987 0.9901 0.0282 48.6725 09335 :
e 0.0192  51.8548  0.9515 00951  21.7632 0.9013 positive real 0.9648 ;
-~ 0.0668  27.8271 09110 0.1231 27.0668  0.8455 positive real 09510 g
" 0.0717  26.0990 0.9104 0.0909 58.5534  0.7655 negative real 0.7082
0.1526  15.2101 0.8892 negative real 0.1385
. negative real 0.9563 ‘9
e negative real 0.2579 K
el
2 ‘
:: Vector-Channel Lattice Vector-Channel Lattice Vector-Channel Lattice )
- 0.0133 0.6941 0.9995 0.6853 0.5977 09723 0.9594 02498 09584 :
. 0.0044 5.4658 0.9988 0.0052 5.4792  0.9986 0.0065 54728 0.9982
M 0.0051 164795  0.9958 0.0044 16.4813  0.9964 0.0043 16.4825  0.9965 :
2 0.0055 33.4165  0.9908 0.0055 33.4307 0.9908 0.0056 334308 09907 )
Y 0.0054 56.2169  0.9850 0.0055 56.2822  0.9848 0.0056 56.2721  0.9843 -d
- 00113  40.7037 0.9772 0.0044 48.2454 0.9894 0.0080 409916 0.9837 A
7 00118 454384 09735 0.0074 409636 0.9849 0.0193 24,1705 0.9769
0.0209  5].304] 0.9479 0.0553 23.5206 0.9370 0.0174 480543  0.9591
" 0.0677 279494  0.9096 0.2774 26.0845 0.6863 negative real 0.8362 .
e 0.0924  25.0789  0.8902 pegative real 0.8681 negative real 0.0488 3
:’ 0.2028  15.6399  0.8505 negative real 0.4307 ")
negative real 0.9521 X
\: negative real 0.3142
» ’
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Overall, the lattices produced good cstimates for the modes below the Nyquist frequency.  ‘The

cigenvalue corresponding to the first mode above the Nyquist frequency also was obtained with .

reasonable accuracy, although the frequency and the damping ratio for this mode are aliased. The lowest

mode, corresponding to the hub rotation, 1s the hardest among the first five to identify. Longer data sets

and higher-order filters are nceded to obtain reasonable estimates for this mode. In general, the

reduced-order lattices require more data points to obtain good estimates of frequencies and damping

ratios.

Generally, lattices of order lower than 18 missed the lowest mode entirely, but identified the other

four sub-Nyquist frequencies satisfatonly, although some of the damping ratios were quite inaccurate. 1f

we only need small prediction error from the filter (say, for adaptive control), then Figure 2 indicates that

I

12 1s a sufficient lattice order.

::- When we added sensor noise that was on average 5% of the sensor data, the results were almost as .
Ce D)
~
> . . - . - . . .
- vood as those in the tables for 3% noise. For noise levels of 9% and above, the filter identified only once
»
b - )

or two of the higher sub-Nyquist frequencies and yielded poor estimates for damping ratios.  This is

x:* consistent with Figure 2, which indicates that the lattice filter has trouble distinguishing between the .
- .
o -
-.;i\ structural dynamics and the greater sensor noise.  We expect that the estimates of the lowest frequencies
N

La
:4' would improve with more samples, which would cover more peniods of the lower frequencies. ;

Tubles 3 and 4 indicate the advantages of the vector-channel lattice.  The vector-channe] estimates for

5\"

L a0 D 2 JaS g

the fowest mode are significantly better than those obtained by the independent standard lattices.  For the

L dnd

rest of the modes, where standard lattices produced good estimates, the vector-channel produced estimates

close to the average of the two independent standard lattices.

353

hY

RS

The ordenng of the eigenvalues is also important.  Often the standard lattices estimated erroneous

AN

A

eigenvalues whose magnitudes were greater than the magnitudes of the true eigenvalues. Sometimes these

e erroncous eigenvalues even had magnitudes greater than one (and negative damping ratios). This greatly .
N complicates identifying the true modes below the Nyquist frequency.

N

% -

We found that, in a large majonty of compansons, the vector-channel lattice estimates were at lcast

-~

as good as or better than the estimates from cither standard lattice. However, since the vector-channel

estimate 1s a Kind of average of the individual standard lattice estimates, it i1s possible that one sufficiently
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noisy measurement channel can cause the vector-channed estimate to be worse than another single channel

estimate. This happened in Table 4, for example, wheio the standard Eattice for the hub channel estimated

- a negative damping ratio, which caused the vector-channel lattice to estimate an meorrect mode with

frequency 48.2 and damping ratio similar to that of the true modes.
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5. CONCLUSIONS

We have developed a least-squares lattice filter that can constriun the coeflicients in the AR moddl to
be the same for some or all of the channels of a4 multi-output system.  If this constraint is not imposcd,
the vector-channel lattice here reduces to the standard multi-input-multi-output least-squares lattice filter.
Even in the standard lattice case, the denvation in Section 2 is needed for current research on the
performance of lattice filters applied to distnbuted systems, which require infinite histories in the AR
models. To handie forced-response data, as opposed to impulse response, the vector-channel lattice must
accomodaie scalar input (MA) channels as well as vector measurement channels. A method for this has

been demonstrated. although the number of channels grows large fast with multiple inputs.

The pnmary motivation tor the vector-channel lattice has been adaptive identification and control of
flexable structures. Constraining all measurement channels to have the same AR model introduces
mformation into the estimation algonthm that reduces the effect of sensor noise. as demonstrated by the
numerical results e Seetion 4. The numencal results also show that the frequencies and damping ratios
for the most significant modes can be identiticd with a lattice whose order 1s lower than the number of

excited modes, even in the presence of noise.
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:'_: ADAPTIVE IDENTIFICATION OF FLEXIBLE STRUCTURES ]
",;. BY LATTICE FILTERS
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!
’.\ J.S. Gibson !
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e
AT
::-: Abstract Montgomery, Sundararajan [in SM1,SM2| and Wiberg
N [W1] were first to apply lattices to identification of flexible ‘
In this paper, we present our recent investigations on structures. Montgomery, et. al., have been using a variety )
lattice filters and their applications to adaptive identifica- of techniques —such as Discrete Fourier Tranforms- for the
tion of flexible structures. Since the order of the systems identication of these structures while the lattices were re-
can not be known —or the eflective order may change— the lied upon mostly for order determination. Wiberg has been
order recursiveness of the lattices is of particular inter- emphasizing mainly the frequency estimation based on the
est. Implementation of lattices would permit on-line or- free response (zero input) of the system. In our research
der determination and would allow the order of the filter [JG1,J1], we have expanded the scope and developed new
to be changed without the need to reprocess the previous approaches in the application of lattice filters for adaptive
data. Experimental data from the flexible grid structure identification of flexible systems. Our approach uses the
at NASA-Langley are used to obtain results showing the lattice filters as the only identification tool required. We
feasibility of lattices and the advantages that result from  also seek frequency (and damping ratio) estimates for a va-
their order recursive property. One-step-ahead prediction riety of input sequences with the eventual goal of adaptive
and estimates for natural frequencies are among the results control.
shown. Of particular interest are the frequency estimates In this paper, we present results obtained from the ap-
which agree closely with the frequency estimates obtained plication of lattice filters to the NASA-Langley grid, a flexi-
from off-line identification techniques. The one step-ahead- ble experimental structure used in research on control and
prediction results also show the advantages that lattices identification of space structures. These results demon-
provide with their order-determir.ation capability, which strate the feasibility of lattice filters for on-line identifica-
would be significant for adaptive control purposes. tion — and eventually adaptive control - of flexible struc-
tures.
’ 1._Introdyction \
.‘J
:‘-f. 2. State-space and ARMA representations .
n Adaptive identification of flexible systems is receiving «
~:: increasing “.temlon' Since flexible syst.em.s are often mo d- For numerical work, the linear motions of flexible struc- h
-~ eled as distributed systems, they provide major practical . . . . . . h
and theoretical challenges to the control community. Insuf- tures ar ¢ approximated by a finite dimensional differential
' _-:‘: ficient model fidelity, poor knowledge of structural damp- equation of the form \
:::.‘p ing, and the lack of feasibility for ground testing fo'r ma.ny (t) = Az(t) + B.u(t) '
e of the large space structures are some of the contributing y(t) = Cz(t) (2.1)
. factors to the recent interest in adaptive identification of i . '
'C-:' these systems. Determination of an effective system order where.y 18 the. output (measurements), u the input, etc.
is one of the most important problems, since there is no Thf discrete-time form of the .nbove equation has the fol-
:-:,. fixed order that can be assigned to these systems a priori. lowing well known representation:
Ny Recer.ily, lattice filters are being studied for adaptive _
:, identification of flexible structures because they can iden- { z(t +1) = Tz(¢) + Bau(t) (2.2)
" oif ) y(t) = Cz(¢t) .
., y the effective plant order as well as the parameters for .
: the digital input/output model of a structure. The time- For digital adaptive control and identification, the input
~ update equations needed for adaptive filtering were de- -~ output representation corresponding to (2.2) usually is
~ veloped by Lee, Morf, and Freidlander who studied the ~ used. This alternative representation is 1
o applications of lattices to speech processing and adaptive
2 control, see [LMF LFM| among many. N N :
:::f ! This author was supported by AFOSR grant 840309 ve) = § ay(t-1) + ._Zl biult ~1) (2.3) \
()
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$ and is called an ARMA {Auto Regressive Moving Average) :
| : model. .
N Mass and stiffness properties of a system are, tradition- .

ally speaking, obtained from finite element analysis and ex-
o tensive ground testing. The matrices in equations (2.1, 2.2) Forn=0101-1: ¢

N: could then be formed by the standard methods. This ap- >

» proach, as mentioned in the previous section, is becoming _ T o=, _ s
L less and less desirable, due to the properties and require- Kni)= A K ilt = D+ (0 G (1= Dyt = 1. \
5" ments associated with the modern applications of fiexible :
o systems. Goo (0= G0) — rd) RPN, A=0012...

e Because of the difficulties associated with the identifi- -
oy cation of the matrices in (2.1) and (2.2) - such as the num-

_.:: ber of parameters involved and the lack of uniqueness - the enei(0) = (0} — r(0= 1) RT((— D&l ;
T ARMA representation of (2.3) is more useful for adaptive ‘

:: identification and control. In addition to the small number

o of parameters involved, this model uses only the measured Fret(O = r 1= 1) — () RY() Kpuy(0) -

inputs and outputs of the system (the state need not be

KX estimated) and it can be used for a variety of adaptive K
", control algorithms (see (GS1] among many). Furthermore, RE (D)= RED = Kner(0 RT(E= DKL (1) Ry
‘ the AR coefficients contain the necessary information for ;

natural frequency (and damping) determination. This can ~
be seen easily by considering the single-input-single- out- Rielty= Rift = 1) = KJo () RT(0) Knorl0
put (SISO) case. There, the AR coefficients are the same )

2 as the coefficients of the characteristic polynomial of the -3

N state transition matrix of equation (2.2) (for details see .
'; [JG1 and C1}). In [JG1, J1] we have presented methods Table 1: The Residual Error Filter Algorithm -
- that extends this directly to the MIMO case, as well. -
~7 Adaptive (on-line) identification of these ARMA mod- all intermediate order filters are automatically obtained, A

els has been siudied extensively by many authors, see the eflective order of the system can be estimated so that

. [LS1, GS1] for example. In most cases, however, the order the most appropriate set of coefficients (corresponding to :

of the system is assumed to be known and fixed. Such the best estimated order) are used. .

. assumptions, clearly, are not applicable to the flexible sys- The order determination capability of lattices is the K

. tems of interest. Lattice filters, introduced in the next major reason for our interest. It should be noted, how- B,
N section, have the capability to identify the required param-  aver, that other important features of lattices are their K
N eters wit}?out such assumptions and can actually estimate  pymerical stability [LL1] and their potential for VLSI im-

g the effective order of the system as well. plementation due to their special structure which consists Ay
b~ of many similar modules. .
:- 3. Adaptive Identification Using Lattice Filters In (JG1,J1], we have developed a novel derivation of ;

~ the lattices that has two important features. The first one )

::C The most common method for the on-line estimation is the basic framework used, which lends itself nicely to ::

‘ of the ARMA coefficients is the recursive least-squares al-  Some of the more theoretical aspects of these flexible sys- '

" gorithm. In most applications, the fact that N is finite tems. The second feature is the extension of the lattices to -
< is not a serious limitation because the dynamic behavior ~ the case of many measurement channels (where each chan- N

_';‘ of the system can be approximated by the behavior of a nel may contain many scalar measurements). This feature 4
. finite dimensional approximation to the system. For flex-  ¢an be exploited easily to extend the many desirable prop- N
e ible structures, which theoretically speaking are infinite  erties of the SISO ARMA models to the MIMO systems -

T dimensional, it is quite common to use an approximation and hence improve the estimates for the system natural '

A model based on the few of the modes that are highly ex- frequencies, see [JG1,J1] for more detail. 3
‘) cited. The real problem is that, in the classical recursive The residual-error lattice algorithm is listed in Table -
) S least-squares algorithms, N must be fixed. Depending on 1. This algorithm must be performed at each time step to S
o the initial conditions and external excitation, the order of ~ Update the filter variables. The variable R*(t) is one of the ,
: the finite dimensional model required to approximate the crucial variables and is used to help determine the effective o~
- response of the system accurately can vary widely. order of the system. Due to space limitation, the discussion A

The least-squares lattice addresses this issue directly concerning this issue is omitted. For details regarding the
s by providing an algorithm that can be variable-order. A initialization and definitions of other variables see (JG1,J1]. .
M lattice filter algorithm of order n, being recursive in time The algorithm in Table 1, as mentioned before, calcu- A
v as well as order, results in filters of order one to n and lates the residual error; i.e., the portion of the output y(t) !

N allows the maximum order of the filter (n) to be increased that can not be fitted in a model based on all of the data

N gradually, without reprocessing of the previous data. Since including y(t). A more useful approach (for prediction and b
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Table 2: AR Coefficients Algorithm

eventually control purposes) would be the prediction error
filter. By prediction error we mean the error between y(t)
and its estimate using the data up to time (t-1). Simple
modification of the above algorithm would yield a filter
that calculates the prediction error (and eliminates the
inversion of the G matrix in the process). Also, simple
application of the matrix inversion formulas results in the
elimination of another inversion (preferably R") and thus
reduce the total number of inversions to one for each time
step. Again, we omit the details for the sake of brevity.
The prediction error lattice algorithm would be quite sim-
ilar to the residual algorithm. Four of the above equations
have to be modified as the following ( with ¢ and 7 as the
prediction errors ) :

Knat(t) = A Knyi(t = 1) + &2{t) Galt — 1) 7o{t = 1)

Gas1(t) = Galt) + Gu(t) Falt) R37(t — 1) 7a(t) Galt)

Enea(t) = €alt) — Falt —1) RI7(t - 2) KT, (t - 1)

Fart(t) = #alt = 1) = &(t) RI*(E = 1) Knea(t = 1)

Table 2 consists of the algorithm that generates the
ARMA coefficients for any desired order. For this, the
ARMA of (2.3) is first converted to a two-channel AR form
(using a simple embedding). This part is presented sepa-
rately to underscore the point that these coefficients need
not be updated at every time step. Rather, this algorithm
is invoked at any time (and for any order) desired to gener-
ate the ARMA coefficients and will be turned off at other
times.

Other technical issues (such as the required embedding,
the reduced lattice structure to determine the input for the
control applications, etc.) are discussed in [J1].
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Figure 1: The Grid Schematic

4. The NASA-Langley Grid

This grid is an experimental structure at the NASA-
Langley Research Center in Hampton, Virginia, designed
for research on identification and control of flexible space
structures. It is a 7 ft by 10 ft planar structure made of
thin, flat aluminum bars with uniform spacing (8 vertical
and 11 horizontal bars). The grid is suspended from the
ceiling by two cables as shown in the schematic of Figure 1.
Rate gyros are used to measure the rotational rate about
an axis in the plane of the grid and the actuators are reac-
tion wheels. The position of the actuators and sensors are
marked on the diagram below.

This structure has been studied extensively by Mont-
gomery, et al, [MWLN,SM1]. Sine wave sweeps have been
used to determine the structural natural frequencies and
the results show that the grid has as many as twenty modes
below the frequency of 10 Hz. These closely packed natural
frequencies (and their corresponding low damping ratios)
are the main reasons for our interest in this structure for
our research in adaptive identification and control of flex-
ible systems.

5. Experimental Results

In this section, we present some of the results obtained
from the grid by the lattice filter algorithms listed above.
All of he results presented here are obtained from two test
runs. In the first case the input consists of a sine-wave
with a varying frequency. The second case has a square-
wave as the input and is used to excite numerous modes
of the structure. In each case, the aim is to identify the
most important natural frequencies (and their correspond-
ing damping) and study the behavior of the prediction er-
ror for different filter orders.

Figure 2 is a sample of the sensor measurements for
the case of square input. The top plot is the first sensor,
the second plot corresponds to sensor number 2, etc. It
is clear that, although all sensors have certain amount of
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: Figure 3: Frequency of Input Signal as Identified by Lattice
:_. Figure 2: Sample of Sensor Measurements: Sensors 1-4 S
\$ Naturally, the noisy sensor (four) gives the worst estimates "o
- noise, sensor four is quite noisy and sensor three seems to and, in one exceptional case, can not identify one of the low
) be saturated most of the time. Overall, sensor two has the modes. In all of our studies we have seen, consistently, that '
::r best measurements. for a given input sequence and sensor, high order filters are o
-.: The first set of results concern the prediction error and needed to identify the frequency while good prediction can :
", its behavior as the order of the filter increases. Since most be obtained from much lower order lattices. The results "
..’ of the available adaptive control algorithm are based on below are all obtained from a lattice filter of order 48 using :

- some prediction for the future outputs (one or more steps the sensor-two measurements.

ahead), this study is the first step toward the eventual Estimating the damping ratios is another topic of in-
\" adaptive control of these systems. Figue 4 shows the ac- terest. The structure is widely believed to have non-linear, : ,
::: tual outputs (the first graph) and the (one step ahead) pre- vibration-level dependent damping. The results here show ¢
4 : dicted value of the output for different order filters. The that although a linear (and proportional) damping model K
A saw-tooth curve around the horizontal axis is the actual does not fit the data, an approximate model with such .
\'- prediction error for that order filter. The error is plot- properties would have the expected damping levels. Also, "
ted on the same scale so that it can be compared with it was observed consistently that the quare wave input .
- the actual prediction. Also note the drop in the average (which caused substantial vibration in the grid) results in -
-:. magnitude of the error, as the filter order is increased. higher damping for the modes of the structure. o
- As these graphs show, the general shape of the response Three sets of natural frequencies are identified. The N
,:- (correponding to the dominant modes) is identified and first set is a group of three low frequencies (including the
‘" predicted by relatively low order lattices. The high fre- dominant one around .56 Hz). The behavior of these modes "
quency content of the signal, however, requires filters of -the third one in particular- is quite interesting. The sec- )
- significantly larger order. This is evident in the peaks of ond and third modes are not quite identified by the lattice :
A the signal where the high frequencies are more distinguish-  at the beginning. Once these modes receive substantial :

- able. The next graph (Figue 5) is the magnified version of  excitation (i.e., when the input frequency is close to the
. Figure 4. There, the behavior of the prediction (and the  patural frequencies), the lattice results in good estimates )
':' corresponding error) is underscored more clearly. for them. This can be seen by a simple comparison of “

) Next, we will summarize some of results regarding the the input frequencies (Figure 3) and the natural frequen-

.- natural frequency estimates of the system. We have cho- cies (Figure 6). Also the behavior of the damping ratio :

sen to present the resuits from the case of sinewave input. estimates is presented for one of the modes which is repre- o
:\ The results obtained from this case show that the domi- sentative of the rest. :
.r:‘ nant frequencies can be identified with inputs that are not The second set of frequencies are those which the higher )
:-‘ sufficiently rich to excite all of the frequencies {in the sense modes which are not as highly excited as the first three :

h of (GS1,LS1]). Also, a few interesting issues that arise due frequencies and require large order filters (generally speak-

“ to the specific nature of the input signal can be discussed. 1ng) Figure 7 shows the first three of these modes. A
:. The frequency of the input sinewave was increased gradu- The third set of modes are a group of high frequency .
B ally according to Figure 3 (this graph was obtained from modes which have extremely low damping (typically less .

;'_- a simple single channel lattice). than one percent critical) which are present in all cases .
'\: All four sensors see these frequencies for both inputs. and are identified very quickly. Further investigation of K
N,
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still data (i.e., data obtained when the structure is not
vibrating) indicates that these modes are from the sensors
and not from the structure, since all these modes were
present when the sensors were observing the still grid. The
plots in Figure 8 show the behavior of three of these modes.

6. Concluding Remarks

In this paper, we have investigated the application of
lattice filters to the identification of flexible structures.
The primary advantage of lattices, for such applications,
is the flexibility they offer with respect to the system or-
der. By being order recursive, lattices can be used to esti-
mate an effective order for the system and, consequently,
to change the order of the filter, on-line, without any loss
of data. Experimental data from the NASA-Langley grid
was used to show some of the results obtained. The be-
havior of the prediction for different order filters and the
corresponding estimates for the system natural frequen-
cies all point to the advantages that lattices provide for
the on-line parameter identifiction of flexible structures.

The natural frequency estimates shown here agree with
those obtained at NASA-Langley, see [MWLN], by using
extensive off-line techniques. The following table shows
a simple comparisons between [MWLN] and the results
obtained here; i.e., [JG].

MWLN | JG
.3695 ks
.58 .560
1.046 i
1.420 1.37
2.128 2.07

The lowest mode, at .3695 Hz, is the rigid body mode due
to the cables connecting the grid to the ceiling. Since this
mode was not excited in the experiments that data for this
paper was collected from, this mode is not identified here.
The third mode, at 1.046 Hz, has nodes at the sensor loca-
tions that were used here. This mode, therefore, could not
be identified with the sensors used for the data presented
here.

The accuracy of the results obtained here (less that 5%
variation in frequencies shown above, for example) is in-
dicative of the potential new applications of lattices for
on-line identification (and adaptive control of) of flexi-
ble structures. We are currently investigating using white
noise as the input (to excite all modes) and tracking of
the changes in the parameters when the mass properties
of the structure are altered singnificantly. Preliminary re-
sults have been quite encouraging. Such results will be
presented in other publications in the near future.
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